ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching Multi-Rate and Multi-Modal Temporal Enhanced Networks for Gesture Recognition

118   0   0.0 ( 0 )
 نشر من قبل Zitong Yu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Gesture recognition has attracted considerable attention owing to its great potential in applications. Although the great progress has been made recently in multi-modal learning methods, existing methods still lack effective integration to fully explore synergies among spatio-temporal modalities effectively for gesture recognition. The problems are partially due to the fact that the existing manually designed network architectures have low efficiency in the joint learning of multi-modalities. In this paper, we propose the first neural architecture search (NAS)-based method for RGB-D gesture recognition. The proposed method includes two key components: 1) enhanced temporal representation via the proposed 3D Central Difference Convolution (3D-CDC) family, which is able to capture rich temporal context via aggregating temporal difference information; and 2) optimized backbones for multi-sampling-rate branches and lateral connections among varied modalities. The resultant multi-modal multi-rate network provides a new perspective to understand the relationship between RGB and depth modalities and their temporal dynamics. Comprehensive experiments are performed on three benchmark datasets (IsoGD, NvGesture, and EgoGesture), demonstrating the state-of-the-art performance in both single- and multi-modality settings.The code is available at https://github.com/ZitongYu/3DCDC-NAS



قيم البحث

اقرأ أيضاً

88 - Dongliang He , Fu Li , Qijie Zhao 2018
In this report, our approach to tackling the task of ActivityNet 2018 Kinetics-600 challenge is described in detail. Though spatial-temporal modelling methods, which adopt either such end-to-end framework as I3D cite{i3d} or two-stage frameworks (i.e ., CNN+RNN), have been proposed in existing state-of-the-arts for this task, video modelling is far from being well solved. In this challenge, we propose spatial-temporal network (StNet) for better joint spatial-temporal modelling and comprehensively video understanding. Besides, given that multi-modal information is contained in video source, we manage to integrate both early-fusion and later-fusion strategy of multi-modal information via our proposed improved temporal Xception network (iTXN) for video understanding. Our StNet RGB single model achieves 78.99% top-1 precision in the Kinetics-600 validation set and that of our improved temporal Xception network which integrates RGB, flow and audio modalities is up to 82.35%. After model ensemble, we achieve top-1 precision as high as 85.0% on the validation set and rank No.1 among all submissions.
79 - Yi Zhang , Chong Wang , Ye Zheng 2019
The purpose of gesture recognition is to recognize meaningful movements of human bodies, and gesture recognition is an important issue in computer vision. In this paper, we present a multimodal gesture recognition method based on 3D densely convoluti onal networks (3D-DenseNets) and improved temporal convolutional networks (TCNs). The key idea of our approach is to find a compact and effective representation of spatial and temporal features, which orderly and separately divide task of gesture video analysis into two parts: spatial analysis and temporal analysis. In spatial analysis, we adopt 3D-DenseNets to learn short-term spatio-temporal features effectively. Subsequently, in temporal analysis, we use TCNs to extract temporal features and employ improved Squeeze-and-Excitation Networks (SENets) to strengthen the representational power of temporal features from each TCNs layers. The method has been evaluated on the VIVA and the NVIDIA Gesture Dynamic Hand Gesture Datasets. Our approach obtains very competitive performance on VIVA benchmarks with the classification accuracies of 91.54%, and achieve state-of-the art performance with 86.37% accuracy on NVIDIA benchmark.
Graph convolutional networks (GCNs) can effectively capture the features of related nodes and improve the performance of the model. More attention is paid to employing GCN in Skeleton-Based action recognition. But existing methods based on GCNs have two problems. First, the consistency of temporal and spatial features is ignored for extracting features node by node and frame by frame. To obtain spatiotemporal features simultaneously, we design a generic representation of skeleton sequences for action recognition and propose a novel model called Temporal Graph Networks (TGN). Secondly, the adjacency matrix of the graph describing the relation of joints is mostly dependent on the physical connection between joints. To appropriately describe the relations between joints in the skeleton graph, we propose a multi-scale graph strategy, adopting a full-scale graph, part-scale graph, and core-scale graph to capture the local features of each joint and the contour features of important joints. Experiments were carried out on two large datasets and results show that TGN with our graph strategy outperforms state-of-the-art methods.
Analyzing human affect is vital for human-computer interaction systems. Most methods are developed in restricted scenarios which are not practical for in-the-wild settings. The Affective Behavior Analysis in-the-wild (ABAW) 2021 Contest provides a be nchmark for this in-the-wild problem. In this paper, we introduce a multi-modal and multi-task learning method by using both visual and audio information. We use both AU and expression annotations to train the model and apply a sequence model to further extract associations between video frames. We achieve an AU score of 0.712 and an expression score of 0.477 on the validation set. These results demonstrate the effectiveness of our approach in improving model performance.
Sign language is commonly used by deaf or speech impaired people to communicate but requires significant effort to master. Sign Language Recognition (SLR) aims to bridge the gap between sign language users and others by recognizing signs from given v ideos. It is an essential yet challenging task since sign language is performed with the fast and complex movement of hand gestures, body posture, and even facial expressions. Recently, skeleton-based action recognition attracts increasing attention due to the independence between the subject and background variation. However, skeleton-based SLR is still under exploration due to the lack of annotations on hand keypoints. Some efforts have been made to use hand detectors with pose estimators to extract hand key points and learn to recognize sign language via Neural Networks, but none of them outperforms RGB-based methods. To this end, we propose a novel Skeleton Aware Multi-modal SLR framework (SAM-SLR) to take advantage of multi-modal information towards a higher recognition rate. Specifically, we propose a Sign Language Graph Convolution Network (SL-GCN) to model the embedded dynamics and a novel Separable Spatial-Temporal Convolution Network (SSTCN) to exploit skeleton features. RGB and depth modalities are also incorporated and assembled into our framework to provide global information that is complementary to the skeleton-based methods SL-GCN and SSTCN. As a result, SAM-SLR achieves the highest performance in both RGB (98.42%) and RGB-D (98.53%) tracks in 2021 Looking at People Large Scale Signer Independent Isolated SLR Challenge. Our code is available at https://github.com/jackyjsy/CVPR21Chal-SLR
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا