ﻻ يوجد ملخص باللغة العربية
Generative adversarial networks (GANs) have been a popular deep generative model for real-world applications. Despite many recent efforts on GANs that have been contributed, mode collapse and instability of GANs are still open problems caused by their adversarial optimization difficulties. In this paper, motivated by the cooperative co-evolutionary algorithm, we propose a Cooperative Dual Evolution based Generative Adversarial Network (CDE-GAN) to circumvent these drawbacks. In essence, CDE-GAN incorporates dual evolution with respect to the generator(s) and discriminators into a unified evolutionary adversarial framework to conduct effective adversarial multi-objective optimization. Thus it exploits the complementary properties and injects dual mutation diversity into training to steadily diversify the estimated density in capturing multi-modes and improve generative performance. Specifically, CDE-GAN decomposes the complex adversarial optimization problem into two subproblems (generation and discrimination), and each subproblem is solved with a separated subpopulation (E-Generator} and E-Discriminators), evolved by its own evolutionary algorithm. Additionally, we further propose a Soft Mechanism to balance the trade-off between E-Generators and E-Discriminators to conduct steady training for CDE-GAN. Extensive experiments on one synthetic dataset and three real-world benchmark image datasets demonstrate that the proposed CDE-GAN achieves a competitive and superior performance in generating good quality and diverse samples over baselines. The code and more generated results are available at our project homepage: https://shiming-chen.github.io/CDE-GAN-website/CDE-GAN.html.
The paper proposes a Dynamic ResBlock Generative Adversarial Network (DRB-GAN) for artistic style transfer. The style code is modeled as the shared parameters for Dynamic ResBlocks connecting both the style encoding network and the style transfer net
Conditional Generative Adversarial Networks (cGANs) have been used in many image processing tasks. However, they still have serious problems maintaining the balance between conditioning the output on the input and creating the output with the desired
Pansharpening is a widely used image enhancement technique for remote sensing. Its principle is to fuse the input high-resolution single-channel panchromatic (PAN) image and low-resolution multi-spectral image and to obtain a high-resolution multi-sp
This work tackles the face recognition task on images captured using thermal camera sensors which can operate in the non-light environment. While it can greatly increase the scope and benefits of the current security surveillance systems, performing
Nowadays, target recognition technique plays an important role in many fields. However, the current target image information based methods suffer from the influence of image quality and the time cost of image reconstruction. In this paper, we propose