ﻻ يوجد ملخص باللغة العربية
State-of-the-art navigation methods leverage a spatial memory to generalize to new environments, but their occupancy maps are limited to capturing the geometric structures directly observed by the agent. We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions. In doing so, the agent builds its spatial awareness more rapidly, which facilitates efficient exploration and navigation in 3D environments. By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment, with performance significantly better than strong baselines. Furthermore, when deployed for the sequential decision-making tasks of exploration and navigation, our model outperforms state-of-the-art methods on the Gibson and Matterport3D datasets. Our approach is the winning entry in the 2020 Habitat PointNav Challenge. Project page: http://vision.cs.utexas.edu/projects/occupancy_anticipation/
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments. End-to-end learning-based navigation methods struggle at this task as they are ineffective at explor
The ability to navigate like a human towards a language-guided target from anywhere in a 3D embodied environment is one of the holy grail goals of intelligent robots. Most visual navigation benchmarks, however, focus on navigating toward a target fro
Fast, collision-free motion through unknown environments remains a challenging problem for robotic systems. In these situations, the robots ability to reason about its future motion is often severely limited by sensor field of view (FOV). By contrast
Intra-operative anticipation of instrument usage is a necessary component for context-aware assistance in surgery, e.g. for instrument preparation or semi-automation of robotic tasks. However, the sparsity of instrument occurrences in long videos pos
In autonomous navigation of mobile robots, sensors suffer from massive occlusion in cluttered environments, leaving significant amount of space unknown during planning. In practice, treating the unknown space in optimistic or pessimistic ways both se