ﻻ يوجد ملخص باللغة العربية
Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organized criticality). Our theoretical analysis uses hydropathic waves to identify and contrast the functional differences between the polymerizing $alpha$ and $beta$ tubulin monomers, which are similar in length and secondary structures, as well as having indistinguishable phylogenetic trees. We show how evolution has improved water-driven flexibility especially for $alpha$ tubulin, and thus facilitated heterodimer microtubule assembly, in agreement with recent atomistic simulations and topological models. We conclude that the failure of phylogenetic analysis to identify functionally specific positive Darwinian evolution has been caused by 20th century technical limitations. These are overcome using 21st century quantitative mathematical methods based on thermodynamic scaling and hydropathic modular averaging. Our most surprising result is the identification of large level sets, especially in hydrophobic extrema, with both thermodynamically first- and second-order scaled water waves. Our calculations include explicitly long-range water-protein interactions described by fractals. We also suggest a much-needed corrective for large protein drug development costs.
Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organ
What is life. Schrodingers question is discussed here for a specific protein, villin, which builds cells in tissues that detect taste and sound. Villin is represented by a sequence of 827 amino acids bound to a peptide backbone chain. We focus attent
CoV2019 has evolved to be much more dangerous than CoV2003. Experiments suggest that structural rearrangements dramatically enhance CoV2019 activity. We identify a new first stage of infection which precedes structural rearrangements by using biomole
The goal of this study is to explore a new self-healing concept in which fungi are used as a self-healing agent to promote calcium mineral precipitation to fill the cracks in concrete. An initial screening of different species of fungi has been condu
We introduce coarse-grained hydrodynamic equations of motion for diffusion-annihilation system with a power-law long-range interaction. By taking into account fluctuations of the conserved order parameter - charge density - we derive an analytically