ﻻ يوجد ملخص باللغة العربية
Text Simplification (TS) aims to reduce the linguistic complexity of content to make it easier to understand. Research in TS has been of keen interest, especially as approaches to TS have shifted from manual, hand-crafted rules to automated simplification. This survey seeks to provide a comprehensive overview of TS, including a brief description of earlier approaches used, discussion of various aspects of simplification (lexical, semantic and syntactic), and latest techniques being utilized in the field. We note that the research in the field has clearly shifted towards utilizing deep learning techniques to perform TS, with a specific focus on developing solutions to combat the lack of data available for simplification. We also include a discussion of datasets and evaluations metrics commonly used, along with discussion of related fields within Natural Language Processing (NLP), like semantic similarity.
Much of modern-day text simplification research focuses on sentence-level simplification, transforming original, more complex sentences into simplifie
This work improves monolingual sentence alignment for text simplification, specifically for text in standard and simple Wikipedia. We introduce a convolutional neural network structure to model similarity between two sentences. Due to the limitation
Text Simplification improves the readability of sentences through several rewriting transformations, such as lexical paraphrasing, deletion, and splitting. Current simplification systems are predominantly sequence-to-sequence models that are trained
The evaluation of text simplification (TS) systems remains an open challenge. As the task has common points with machine translation (MT), TS is often evaluated using MT metrics such as BLEU. However, such metrics require high quality reference data,
The success of a text simplification system heavily depends on the quality and quantity of complex-simple sentence pairs in the training corpus, which are extracted by aligning sentences between parallel articles. To evaluate and improve sentence ali