ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven quark and gluon jet modification in heavy-ion collisions

139   0   0.0 ( 0 )
 نشر من قبل Jasmine Brewer
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Whether quark- and gluon-initiated jets are modified differently by the quark-gluon plasma produced in heavy-ion collisions is a long-standing question that has thus far eluded a definitive experimental answer. A crucial complication for quark-gluon discrimination in both proton-proton and heavy-ion collisions is that all measurements necessarily average over the (unknown) quark-gluon composition of a jet sample. In the heavy-ion context, the simultaneous modification of both the fractions and substructure of quark and gluon jets by the quark-gluon plasma further obscures the interpretation. Here, we demonstrate a fully data-driven method for separating quark and gluon contributions to jet observables using a statistical technique called topic modeling. Assuming that jet distributions are a mixture of underlying quark-like and gluon-like distributions, we show how to extract quark and gluon jet fractions and constituent multiplicity distributions as a function of the jet transverse momentum. This proof-of-concept study is based on proton-proton and heavy-ion collision events from the Monte Carlo event generator Jewel with statistics accessible in Run 4 of the Large Hadron Collider. These results suggest the potential for an experimental determination of quark and gluon jet modifications.

قيم البحث

اقرأ أيضاً

We study the phenomenon of jet quenching utilizing quark and gluon jet substructures as independent probes of heavy ion collisions. We exploit jet and subjet features to highlight differences between quark and gluon jets in vacuum and in a medium wit h the jet-quenching model implemented in JEWEL. We begin with a physics-motivated, multivariate analysis of jet substructure observables including the jet mass, the radial moments, the $p_T^D$ and the pixel multiplicity. In comparison, we employ state-of-the-art image-recognition techniques by training a deep convolutional neutral network on jet images. To systematically extract jet substructure information, we introduce the telescoping deconstruction framework exploiting subjet kinematics at multiple angular scales. We draw connections to the soft-drop subjet distribution and illuminate medium-induced jet modifications using Lund diagrams. We find that the quark gluon discrimination performance worsens in heavy ion jets due to significant soft event activity affecting the soft jet substructure. Our work suggests a systematically improvable framework for studying modifications to quark and gluon jet substructures and facilitating direct comparisons between theoretical calculations, simulations and measurements in heavy ion collisions.
We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter $hat q $. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the in-cone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.
This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of Quark-Gluon Plasma believed to have created in heavy-ion collisions and in early universe are reported.
Transverse momentum broadening and energy loss of a propagating parton are dictated by the space-time profile of the jet transport coefficient $hat q$ in a dense QCD medium. The spatial gradient of $hat q$ perpendicular to the propagation direction c an lead to a drift and asymmetry in parton transverse momentum distribution. Such an asymmetry depends on both the spatial position along the transverse gradient and path length of a propagating parton as shown by numerical solutions of the Boltzmann transport in the simplified form of a drift-diffusion equation. In high-energy heavy-ion collisions, this asymmetry with respect to a plane defined by the beam and trigger particle (photon, hadron or jet) with a given orientation relative to the event plane is shown to be closely related to the transverse position of the initial jet production in full event-by-event simulations within the linear Boltzmann transport model. Such a gradient tomography can be used to localize the initial jet production position for more detailed study of jet quenching and properties of the quark-gluon plasma along a given propagation path in heavy-ion collisions.
Jets in the vacuum correspond to multi-parton configurations that form via a branching process sensitive to the soft and collinear divergences of QCD. In heavy-ion collisions, energy loss processes that are stimulated via interactions with the medium , affect jet observables in a profound way. Jet fragmentation factorizes into a three-stage process, involving vacuum-like emissions above the medium scale, induced emissions enhanced by the medium length and, finally, long-distance vacuum-like fragmentation. This formalism leads to a novel, non-linear resummation of jet energy loss. In this talk we present new results on the combined effects of small-$R$ resummation and energy loss to compute the $R$-dependent jet spectrum in heavy-ion collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا