ترغب بنشر مسار تعليمي؟ اضغط هنا

Slide-free MUSE Microscopy to H&E Histology Modality Conversion via Unpaired Image-to-Image Translation GAN Models

80   0   0.0 ( 0 )
 نشر من قبل Tanishq Abraham
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

MUSE is a novel slide-free imaging technique for histological examination of tissues that can serve as an alternative to traditional histology. In order to bridge the gap between MUSE and traditional histology, we aim to convert MUSE images to resemble authentic hematoxylin- and eosin-stained (H&E) images. We evaluated four models: a non-machine-learning-based color-mapping unmixing-based tool, CycleGAN, DualGAN, and GANILLA. CycleGAN and GANILLA provided visually compelling results that appropriately transferred H&E style and preserved MUSE content. Based on training an automated critic on real and generated H&E images, we determined that CycleGAN demonstrated the best performance. We have also found that MUSE color inversion may be a necessary step for accurate modality conversion to H&E. We believe that our MUSE-to-H&E model can help improve adoption of novel slide-free methods by bridging a perceptual gap between MUSE imaging and traditional histology.

قيم البحث

اقرأ أيضاً

There has been remarkable recent work in unpaired image-to-image translation. However, theyre restricted to translation on single pairs of distributions, with some exceptions. In this study, we extend one of these works to a scalable multidistributio n translation mechanism. Our translation models not only converts from one distribution to another but can be stacked to create composite translation functions. We show that this composite property makes it possible to generate images with characteristics not seen in the training set. We also propose a decoupled training mechanism to train multiple distributions separately, which we show, generates better samples than isolated joint training. Further, we do a qualitative and quantitative analysis to assess the plausibility of the samples. The code is made available at https://github.com/lgraesser/im2im2im.
Intelligent vision is appealing in computer-assisted and robotic surgeries. Vision-based analysis with deep learning usually requires large labeled datasets, but manual data labeling is expensive and time-consuming in medical problems. We investigate a novel cross-domain strategy to reduce the need for manual data labeling by proposing an image-to-image translation model live-cadaver GAN (LC-GAN) based on generative adversarial networks (GANs). We consider a situation when a labeled cadaveric surgery dataset is available while the task is instrument segmentation on an unlabeled live surgery dataset. We train LC-GAN to learn the mappings between the cadaveric and live images. For live image segmentation, we first translate the live images to fake-cadaveric images with LC-GAN and then perform segmentation on the fake-cadaveric images with models trained on the real cadaveric dataset. The proposed method fully makes use of the labeled cadaveric dataset for live image segmentation without the need to label the live dataset. LC-GAN has two generators with different architectures that leverage the deep feature representation learned from the cadaveric image based segmentation task. Moreover, we propose the structural similarity loss and segmentation consistency loss to improve the semantic consistency during translation. Our model achieves better image-to-image translation and leads to improved segmentation performance in the proposed cross-domain segmentation task.
In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so -- maximizing mutual information between the two, usin g a framework based on contrastive learning. The method encourages two elements (corresponding patches) to map to a similar point in a learned feature space, relative to other elements (other patches) in the dataset, referred to as negatives. We explore several critical design choices for making contrastive learning effective in the image synthesis setting. Notably, we use a multilayer, patch-based approach, rather than operate on entire images. Furthermore, we draw negatives from within the input image itself, rather than from the rest of the dataset. We demonstrate that our framework enables one-sided translation in the unpaired image-to-image translation setting, while improving quality and reducing training time. In addition, our method can even be extended to the training setting where each domain is only a single image.
167 - Yihao Zhao , Ruihai Wu , Hao Dong 2020
Unpaired image-to-image translation is a class of vision problems whose goal is to find the mapping between different image domains using unpaired training data. Cycle-consistency loss is a widely used constraint for such problems. However, due to th e strict pixel-level constraint, it cannot perform geometric changes, remove large objects, or ignore irrelevant texture. In this paper, we propose a novel adversarial-consistency loss for image-to-image translation. This loss does not require the translated image to be translated back to be a specific source image but can encourage the translated images to retain important features of the source images and overcome the drawbacks of cycle-consistency loss noted above. Our method achieves state-of-the-art results on three challenging tasks: glasses removal, male-to-female translation, and selfie-to-anime translation.
In the medical domain, the lack of large training data sets and benchmarks is often a limiting factor for training deep neural networks. In contrast to expensive manual labeling, computer simulations can generate large and fully labeled data sets wit h a minimum of manual effort. However, models that are trained on simulated data usually do not translate well to real scenarios. To bridge the domain gap between simulated and real laparoscopic images, we exploit recent advances in unpaired image-to-image translation. We extent an image-to-image translation method to generate a diverse multitude of realistically looking synthetic images based on images from a simple laparoscopy simulation. By incorporating means to ensure that the image content is preserved during the translation process, we ensure that the labels given for the simulated images remain valid for their realistically looking translations. This way, we are able to generate a large, fully labeled synthetic data set of laparoscopic images with realistic appearance. We show that this data set can be used to train models for the task of liver segmentation of laparoscopic images. We achieve average dice scores of up to 0.89 in some patients without manually labeling a single laparoscopic image and show that using our synthetic data to pre-train models can greatly improve their performance. The synthetic data set will be made publicly available, fully labeled with segmentation maps, depth maps, normal maps, and positions of tools and camera (http://opencas.dkfz.de/image2image).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا