ﻻ يوجد ملخص باللغة العربية
A distributed computing scenario is considered, where the computational power of a set of worker nodes is used to perform a certain computation task over a dataset that is dispersed among the workers. Lagrange coded computing (LCC), proposed by Yu et al., leverages the well-known Lagrange polynomial to perform polynomial evaluation of the dataset in such a scenario in an efficient parallel fashion while keeping the privacy of data amidst possible collusion of workers. This solution relies on quantizing the data into a finite field, so that Shamirs secret sharing, as one of its main building blocks, can be employed. Such a solution, however, is not properly scalable with the size of dataset, mainly due to computation overflows. To address such a critical issue, we propose a novel extension of LCC to the analog domain, referred to as analog LCC (ALCC). All the operations in the proposed ALCC protocol are done over the infinite fields of R/C but for practical implementations floating-point numbers are used. We characterize the privacy of data in ALCC, against any subset of colluding workers up to a certain size, in terms of the distinguishing security (DS) and the mutual information security (MIS) metrics. Also, the accuracy of outcome is characterized in a practical setting assuming operations are performed using floating-point numbers. Consequently, a fundamental trade-off between the accuracy of the outcome of ALCC and its privacy level is observed and is numerically evaluated. Moreover, we implement the proposed scheme to perform matrix-matrix multiplication over a batch of matrices. It is observed that ALCC is superior compared to the state-of-the-art LCC, implemented using fixed-point numbers, assuming both schemes use an equal number of bits to represent data symbols.
One of the major challenges in using distributed learning to train complicated models with large data sets is to deal with stragglers effect. As a solution, coded computation has been recently proposed to efficiently add redundancy to the computation
We consider the problem of coded computing, where a computational task is performed in a distributed fashion in the presence of adversarial workers. We propose techniques to break the adversarial toleration threshold barrier previously known in coded
Cloud providers have recently introduced new offerings whereby spare computing resources are accessible at discounts compared to on-demand computing. Exploiting such opportunity is challenging inasmuch as such resources are accessed with low-priority
Coded computation can be used to speed up distributed learning in the presence of straggling workers. Partial recovery of the gradient vector can further reduce the computation time at each iteration; however, this can result in biased estimators, wh
We consider a MapReduce-type task running in a distributed computing model which consists of ${K}$ edge computing nodes distributed across the edge of the network and a Master node that assists the edge nodes to compute output functions. The Master n