ﻻ يوجد ملخص باللغة العربية
Topology ultimately unveils the roots of the perfect quantization observed in complex systems. The 2D quantum Hall effect is the celebrated archetype. Remarkably, topology can manifest itself even in higher-dimensional spaces in which control parameters play the role of extra, synthetic dimensions. However, so far, a very limited number of implementations of higher-dimensional topological systems have been proposed, a notable example being the so-called 4D quantum Hall effect. Here we show that mesoscopic superconducting systems can implement higher-dimensional topology and represent a formidable platform to study a quantum system with a purely nontrivial second Chern number. We demonstrate that the integrated absorption intensity in designed microwave spectroscopy is quantized and the integer is directly related to the second Chern number. Finally, we show that these systems also admit a non-Abelian Berry phase. Hence, they also realize an enlightening paradigm of topological non-Abelian systems in higher dimensions.
We show that the non-Abelian Berry phase emerges naturally in the s-wave and spin quintet pairing channel of spin-3/2 fermions. The topological structure of this pairing condensate is characterized by the second Chern number. This topological structu
Topological insulators are exotic material that possess conducting surface states protected by the topology of the system. They can be classified in terms of their properties under discrete symmetries and are characterized by topological invariants.
Geometrical Berry phase is recognized as having profound implications for the properties of electronic systems. Over the last decade, Berry phase has been essential to our understanding of new materials, including graphene and topological insulators.
Topological insulators (TIs) having intrinsic or proximity-coupled s-wave superconductivity host Majorana zero modes (MZMs) at the ends of vortex lines. The MZMs survive up to a critical doping of the TI at which there is a vortex phase transition th
We uncover an edge geometric phase mechanism to realize the second-order topological insulators and topological superconductors (SCs), and predict realistic materials for the realization. The theory is built on a novel result shown here that the nont