ﻻ يوجد ملخص باللغة العربية
We uncover an edge geometric phase mechanism to realize the second-order topological insulators and topological superconductors (SCs), and predict realistic materials for the realization. The theory is built on a novel result shown here that the nontrivial pseudospin textures of edge states in a class of two-dimensional (2D) topological insulators give rise to the geometric phases defined on the edge, for which the effective edge mass domain walls are obtained across corners when external magnetic field or superconductivity is considered, and the Dirac or Majorana Kramers corner modes are resulted. Remarkably, with this mechanism we predict the Majorana Kramers corner modes by fabricating 2D topological insulator on only a uniform and conventional $s$-wave SC, in sharp contrast to the previous proposals which applies unconventional SC pairing or SC $pi$-junction. We find that Au/GaAs(111) can be a realistic material candidate for realizing such Majorana Kramers corner modes.
After the recognition of the possibility to implement Majorana fermions using the building blocks of solid-state matters, the detection of this peculiar particle has been an intense focus of research. Here we experimentally demonstrate a collection o
We study the surface states and chiral hinge states of a 3D second-order topological insulator in the presence of an external magnetic gauge field. Surfaces pierced by flux host Landau levels, while surfaces parallel to the applied field are not sign
A ferromagnetic insulator (FI) attached to a conventional superconductor (S) changes drastically the properties of the latter. Specifically, the exchange field at the FI/S interface leads to a splitting of the superconducting density of states. If S
Superconducting topological crystalline insulators (TCI) are predicted to host new topological phases protected by crystalline symmetries, but available materials are insufficiently suitable for surface studies. To induce superconductivity at the sur
Three-dimensional topological insulators (TIs) attract much attention due to its topologically protected Dirac surface states. Doping into TIs or their proximity with normal superconductors can promote the realization of topological superconductivity