ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-Optical Properties of InSb for Infrared Spectral Filtering

103   0   0.0 ( 0 )
 نشر من قبل Nolan Peard
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the Faraday effect in n-type InSb. The Verdet coefficient was determined for a range of carrier concentrations near $10^{17}$ $text{cm}^{-3}$ in the $lambda$ = 8 $mu$m - 12 $mu$m long-wave infrared regime. The absorption coefficient was measured and a figure of merit calculated for each sample. From these measurements, we calculated the carrier effective mass and illustrate the variation of the figure of merit with wavelength. A method for creating a tunable bandpass filter via the Faraday rotation is discussed along with preliminary results from a prototype device.



قيم البحث

اقرأ أيضاً

Antiferromagnets are promising for magneto-optical light control that could be performed at THz frequencies via excitation of the quasi-antiferromagnetic spin modes. However, most of the antiferromagnetic crystals possess optical anisotropy that is u sually treated as an unfavorable condition for the magneto-optical measurements: optical anisotropy is known to diminish the Faraday rotation with respect to the case of the isotropic medium. Here we show that the situation could be quite opposite: a phenomenon of birefringence mediated enhancement of the magneto-optical activity appears if orientation of the incident light linear polarization is chosen properly. The present study relies on the experimental, analytical and numerical studies of iron borate FeBO$_3$ crystals. We demonstrate a significant increase of the magneto-optical activity by more than 10 times for 70$^circ$ angle between light polarization and incidence plane instead of commonly-used p- or s-polarizations. It provides a unique sensitivity to the in-plane magnetization of FeBO$_3$ that is crucial for the pump-probe studies, magneto-optical microscopy and other. The most important practical application of the observed phenomenon is the light modulation with up to 100$%$ efficiency at THz frequencies. The approach is applicable to other types of the birefringent crystals with the magneto-optical response.
We demonstrate injection-locking of 120mW laser diodes operating at 397nm. We achieve stable operation with injection powers of ~100uW and a slave laser output power of up to 110mW. We investigate the spectral purity of the slave laser light via phot on scattering experiments on a single trapped Ca40 ion. We show that it is possible to achieve a scattering rate indistinguishable from that of monochromatic light by filtering the laser light with a diffraction grating to remove amplified spontaneous emission.
By studying the time-dependent axial and radial growth of InSb nanowires, we map the conditions for the synthesis of single-crystalline InSb nanocrosses by molecular beam epitaxy. Low-temperature electrical measurements of InSb nanocross devices with local gate control on individual terminals exhibit quantized conductance and are used to probe the spatial distribution of the conducting channels. Tuning to a situation where the nanocross junction is connected by few-channel quantum point contacts in the connecting nanowire terminals, we show that transport through the junction is ballistic except close to pinch-off. Combined with a new concept for shadow-epitaxy of patterned superconductors on nanocrosses, the structures reported here show promise for the realization of non-trivial topological states in multi-terminal Josephson Junctions.
A novel optical device is designed and fabricated in order to overcome the limits of the traditional sorter based on log-pol optical transformation for the demultiplexing of optical beams carrying orbital angular momentum (OAM). The proposed configur ation simplifies the alignment procedure and significantly improves the compactness and miniaturization level of the optical architecture. Since the device requires to operate beyond the paraxial approximation, a rigorous formulation of transformation optics in the non-paraxial regime has been developed and applied. The sample has been fabricated as 256-level phase-only diffractive optics with high-resolution electron-beam lithography, and tested for the demultiplexing of OAM beams at the telecom wavelength of 1310 nm. The designed sorter can find promising applications in next-generation optical platforms for mode-division multiplexing based on OAM modes both for free-space and multi-mode fiber transmission.
Glasses based on SiO2-PbO-CdO-Ga2O3 system have been studied for the first time for fabrication of mid-infrared optical elements. Gallium oxide concentration was gradually increased, replacing silicon dioxide, for different cadmium and lead oxide con tent. The thermal and optical properties were investigated for different compositions. It was observed that the thermal stability, refractive index, and the transmission in the infrared range increased with increase of gallium and lead concentrations. The most thermally stable glass composition was selected for fabrication of optical elements such as optical fibers. We also successfully fabricated mid-infrared lenses by hot embossing for potential application in compact gas detectors
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا