ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical injection and spectral filtering of high-power UV laser diodes

151   0   0.0 ( 0 )
 نشر من قبل Vera M Sch\\\"afer
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate injection-locking of 120mW laser diodes operating at 397nm. We achieve stable operation with injection powers of ~100uW and a slave laser output power of up to 110mW. We investigate the spectral purity of the slave laser light via photon scattering experiments on a single trapped Ca40 ion. We show that it is possible to achieve a scattering rate indistinguishable from that of monochromatic light by filtering the laser light with a diffraction grating to remove amplified spontaneous emission.



قيم البحث

اقرأ أيضاً

Over the last decade, optical atomic clocks have surpassed their microwave counterparts and now offer the ability to measure time with an increase in precision of two orders of magnitude or more. This performance increase is compelling not only for e nabling new science, such as geodetic measurements of the earth, searches for dark matter, and investigations into possible long-term variations of fundamental physics constants but also for revolutionizing existing technology, such as the global positioning system (GPS). A significant remaining challenge is to transition these optical clocks to non-laboratory environments, which requires the ruggedization and miniaturization of the atomic reference and clock laser along with their supporting lasers and electronics. Here, using a compact stimulated Brillouin scattering (SBS) laser to interrogate a $^8$$^8$Sr$^+$ ion, we demonstrate a promising component of a portable optical atomic clock architecture. In order to bring the stability of the SBS laser to a level suitable for clock operation, we utilize a self-referencing technique to compensate for temperature drift of the laser to within $170$ nK. Our SBS optical clock achieves a short-term stability of $3.9 times 10^{-14}$ at $1$ s---an order of magnitude improvement over state-of-the-art microwave clocks. Based on this technology, a future GPS employing portable SBS clocks offers the potential for distance measurements with a 100-fold increase in resolution.
A Watt-level continuous and single frequency blue laser at 461 nm is obtained by frequency-doubling an amplified diode laser operating at 922 nm via a LBO crystal in a resonant Fabry-P{e}rot cavity. We achieved a best optical conversion efficiency eq ual to 87% with more than 1 W output power in the blue, and limited by the available input power. The frequency-converted beam is characterized in terms of long term power stability, residual intensity noise, and geometrical shape. The blue beam has a linewidth of the order of 1 MHz, and we used it to magneto-optically trap $^{88}$Sr atoms on the 5s$^{2},^{1}$S$_0$ -- 5s5p$,^{1}$P$_1$ transition. The low-finesse, linear-cavity doubling system is very robust, maintains the lock for several days, and is compatible with a tenfold increase of the power levels which could be obtained with fully-fibered amplifiers and large mode area fibers.
We present measurements of the Faraday effect in n-type InSb. The Verdet coefficient was determined for a range of carrier concentrations near $10^{17}$ $text{cm}^{-3}$ in the $lambda$ = 8 $mu$m - 12 $mu$m long-wave infrared regime. The absorption co efficient was measured and a figure of merit calculated for each sample. From these measurements, we calculated the carrier effective mass and illustrate the variation of the figure of merit with wavelength. A method for creating a tunable bandpass filter via the Faraday rotation is discussed along with preliminary results from a prototype device.
Gauge invariance was discovered in the development of classical electromagnetism and was required when the latter was formulated in terms of the scalar and vector potentials. It is now considered to be a fundamental principle of nature, stating that different forms of these potentials yield the same physical description: they describe the same electromagnetic field as long as they are related to each other by gauge transformations. Gauge invariance can also be included into the quantum description of matter interacting with an electromagnetic field by assuming that the wave function transforms under a given local unitary transformation. The result of this procedure is a quantum theory describing the coupling of electrons, nuclei and photons. Therefore, it is a very important concept: it is used in almost every fields of physics and it has been generalized to describe electroweak and strong interactions in the standard model of particles. A review of quantum mechanical gauge invariance and general unitary transformations is presented for atoms and molecules in interaction with intense short laser pulses, spanning the perturbative to highly nonlinear nonperturbative interaction regimes. Various unitary transformations for single spinless particle Time Dependent Schrodinger Equations, TDSE, are shown to correspond to different time-dependent Hamiltonians and wave functions. Accuracy of approximation methods involved in solutions of TDSEs such as perturbation theory and popular numerical methods depend on gauge or representation choices which can be more convenient due to faster convergence criteria. We focus on three main representations: length and velocity gauges, in addition to the acceleration form which is not a gauge, to describe perturbative and nonperturbative radiative interactions. Numerical schemes for solving TDSEs in different representations are also discussed.
134 - Bruno Chanteau 2013
We present a new method for accurate mid-infrared frequency measurements and stabilization to a near-infrared ultra-stable frequency reference, transmitted with a long-distance fibre link and continuously monitored against state-of-the-art atomic fou ntain clocks. As a first application, we measure the frequency of an OsO4 rovibrational molecular line around 10 $mu$m with a state-of-the-art uncertainty of 8x10-13. We also demonstrate the frequency stabilization of a mid-infrared laser with fractional stability better than 4x10-14 at 1 s averaging time and a line-width below 17 Hz. This new stabilization scheme gives us the ability to transfer frequency stability in the range of 10-15 or even better, currently accessible in the near-infrared or in the visible, to mid-infrared lasers in a wide frequency range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا