ﻻ يوجد ملخص باللغة العربية
Alternative theories to quantum mechanics motivate important fundamental tests of our understanding and descriptions of the smallest physical systems. Here, using spontaneous parametric downconversion as a heralded single-photon source, we place experimental limits on a class of alternative theories, consisting of classical field theories which result in power-dependent normalized correlation functions. In addition, we compare our results with standard quantum mechanical interpretations of our spontaneous parametric downconversion source over an order of magnitude in intensity. Our data match the quantum mechanical expectations, and do not show a statistically significant dependence on power, limiting on quantum mechanics alternatives which require power-dependent autocorrelation functions.
We implemented the experiment proposed by Cabello [arXiv:quant-ph/0309172] to test the bounds of quantum correlation. As expected from the theory we found that, for certain choices of local observables, Cirelsons bound of the Clauser-Horne-Shimony-Ho
In this paper we discuss how the gauge principle can be applied to classical-mechanics models with finite degrees of freedom. The local invariance of a model is understood as its invariance under the action of a matrix Lie group of transformations pa
We extend the work of Hellerman (arxiv:0902.2790) to derive an upper bound on the conformal dimension $Delta_2$ of the next-to-lowest nontrival primary operator in unitary two-dimensional conformal field theories without chiral primary operators. The
We introduce a minimal set of physically motivated postulates that the Hamiltonian H of a continuous-time quantum walk should satisfy in order to properly represent the quantum counterpart of the classical random walk on a given graph. We found that
A unifying principle explaining the numerical bounds of quantum correlations remains elusive despite the efforts devoted to identifying it. Here we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenar