ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical Properties of Turbulent Fluctuations Associated with Electron-only Magnetic Reconnection

194   0   0.0 ( 0 )
 نشر من قبل Giuseppe Arro'
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: Recent satellite measurements in the turbulent magnetosheath of Earth have given evidence of an unusual reconnection mechanism that is driven exclusively by electrons. This newly observed process was called electron-only reconnection, and its inter-play with plasma turbulence is a matter of great debate. Aims: By using 2D-3V hybrid Vlasov-Maxwell simulations of freely decaying plasma turbulence, we study the role of electron-only reconnection in the development of plasma turbulence. In particular, we search for possible differences with respect to the turbulence associated with standard ion-coupled reconnection. Methods: We analyzed the structure functions of the turbulent magnetic field and ion fluid velocity fluctuations to characterize the structure and the intermittency properties of the turbulent energy cascade. Results: We find that the statistical properties of turbulent fluctuations associated with electron-only reconnection are consistent with those of turbulent fluctuations associated with standard ion-coupled reconnection, and no peculiar signature related to electron-only reconnection is found in the turbulence statistics. This result suggests that the turbulent energy cascade in a collisionless magnetized plasma does not depend on the specific mechanism associated with magnetic reconnection. The properties of the dissipation range are discussed as well, and we claim that only electrons contribute to the dissipation of magnetic field energy at sub-ion scales.

قيم البحث

اقرأ أيضاً

A new regime of fast magnetic reconnection with an out-of-plane (guide) magnetic field is reported in which the key role is played by an electron pressure anisotropy described by the Chew-Goldberger-Low gyrotropic equations of state in the generalize d Ohms law, which even dominates the Hall term. A description of the physical cause of this behavior is provided and two-dimensional fluid simulations are used to confirm the results. The electron pressure anisotropy causes the out-of-plane magnetic field to develop a quadrupole structure of opposite polarity to the Hall magnetic field and gives rise to dispersive waves. In addition to being important for understanding what causes reconnection to be fast, this mechanism should dominate in plasmas with low plasma beta and a high in-plane plasma beta with electron temperature comparable to or larger than ion temperature, so it could be relevant in the solar wind and some tokamaks.
We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region. We observe significant magnetic field oscillations near the lower hybrid frequency which propagate perpendicularly to the reconnection plane. We also find that the strong electron-scale gradients close to the EDR exhibit significant oscillations at a similar frequency. Such oscillations are not expected for a crossing of a steady 2D EDR, and can be explained by a complex motion of the reconnection plane induced by current sheet kinking propagating in the out-of-reconnection-plane direction. Thus all three spatial dimensions have to be taken into account to explain the observed perturbed EDR crossing.
Earths magnetotail is an excellent laboratory to study the interplay of reconnection and turbulence in determining electron energization. The process of formation of a power law tail during turbulent reconnection is a documented fact still in need of a comprehensive explanation. We conduct a massively parallel particle in cell 3D simulation and use enhanced statistical resolution of the high energy range of the particle velocities to study how reconnection creates the conditions for the tail to be formed. The process is not direct acceleration by the coherent, laminar, reconnection-generated electric field. Rather, reconnection causes turbulent outflows where energy exchange is dominated by a highly non-gaussian distribution of fluctuations. Electron energization is diffuse throughout the entire reconnection outflow but it is heightened by regions of intensified magnetic field such as dipolarization fronts traveling towards Earth.
The reversibility of the transfer of energy from the magnetic field to the surrounding plasma during magnetic reconnection is examined. Trajectories of test particles in an analytic model of the fields demonstrate that irreversibility is associated w ith separatrix crossings and regions of weaker magnetic field. Inclusion of a guide field increases the degree of reversibility. Full kinetic simulations with a particle-in-cell code support these results and demonstrate that while time-reversed simulations at first un-reconnect, they eventually evolve into a reconnecting state.
We study magnetic reconnection events in a turbulent plasma within the two-fluid theory. By identifying the diffusive regions, we measure the reconnection rates as function of the conductivity and current sheet thickness. We have found that the recon nection rate scales as the squared of the inverse of the current sheets thickness and is independent of the aspect ratio of the diffusive region, in contrast to other analytical, e.g. the Sweet-Parker and Petscheck, and numerical models. Furthermore, while the reconnection rates are also proportional to the square inverse of the conductivity, the aspect ratios of the diffusive regions, which exhibit values in the range of $0.1-0.9$, are not correlated to the latter. Our findings suggest a new expression for the magnetic reconnection rate, which, after experimental verification, can provide a further understanding of the magnetic reconnection process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا