ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulent energization of electron power law tails during magnetic reconnection

175   0   0.0 ( 0 )
 نشر من قبل Giovanni Lapenta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Earths magnetotail is an excellent laboratory to study the interplay of reconnection and turbulence in determining electron energization. The process of formation of a power law tail during turbulent reconnection is a documented fact still in need of a comprehensive explanation. We conduct a massively parallel particle in cell 3D simulation and use enhanced statistical resolution of the high energy range of the particle velocities to study how reconnection creates the conditions for the tail to be formed. The process is not direct acceleration by the coherent, laminar, reconnection-generated electric field. Rather, reconnection causes turbulent outflows where energy exchange is dominated by a highly non-gaussian distribution of fluctuations. Electron energization is diffuse throughout the entire reconnection outflow but it is heightened by regions of intensified magnetic field such as dipolarization fronts traveling towards Earth.



قيم البحث

اقرأ أيضاً

414 - Xiaocan Li , Fan Guo , Yi-Hsin Liu 2021
Magnetic reconnection is a primary driver of particle acceleration processes in space and astrophysical plasmas. Understanding how particles are accelerated and the resulting particle energy spectra is among the central topics in reconnection studies . We review recent advances in addressing this problem in nonrelativistic reconnection that is relevant to space and solar plasmas and beyond. We focus on particle acceleration mechanisms, particle transport due to 3D reconnection physics, and their roles in forming power-law particle energy spectra. We conclude by pointing out the challenges in studying particle acceleration and transport in a large-scale reconnection layer and the relevant issues to be addressed in the future.
We study magnetic reconnection events in a turbulent plasma within the two-fluid theory. By identifying the diffusive regions, we measure the reconnection rates as function of the conductivity and current sheet thickness. We have found that the recon nection rate scales as the squared of the inverse of the current sheets thickness and is independent of the aspect ratio of the diffusive region, in contrast to other analytical, e.g. the Sweet-Parker and Petscheck, and numerical models. Furthermore, while the reconnection rates are also proportional to the square inverse of the conductivity, the aspect ratios of the diffusive regions, which exhibit values in the range of $0.1-0.9$, are not correlated to the latter. Our findings suggest a new expression for the magnetic reconnection rate, which, after experimental verification, can provide a further understanding of the magnetic reconnection process.
Electron dynamics surrounding the X-line in magnetopause-type asymmetric reconnection is investigated using a two-dimensional particle-in-cell simulation. We study electron properties of three characteristic regions in the vicinity of the X-line. The fluid properties, velocity distribution functions (VDFs), and orbits are studied and cross-compared. On the magnetospheric side of the X-line, the normal electric field enhances the electron meandering motion from the magnetosheath side. The motion leads to a crescent-shaped component in the electron VDF, in agreement with recent studies. On the magnetosheath side of the X-line, the magnetic field line is so stretched in the third dimension that its curvature radius is comparable with typical electron Larmor radius. The electron motion becomes nonadiabatic, and therefore the electron idealness is no longer expected to hold. Around the middle of the outflow regions, the electron nonidealness is coincident with the region of the nonadiabatic motion. Finally, we introduce a finite-time mixing fraction (FTMF) to evaluate electron mixing. The FTMF marks the magnetospheric side of the X-line, where the nonideal energy dissipation occurs.
193 - Hayk Hakobyan 2020
Plasmoids -- magnetized quasi-circular structures formed self-consistently in reconnecting current sheets -- were previously considered to be the graveyards of energetic particles. In this paper, we demonstrate the important role of plasmoids in shap ing the particle energy spectrum in relativistic reconnection (i.e., with upstream magnetization $sigma_{rm up} gg 1$). Using two dimensional particle-in-cell simulations in pair plasmas with $sigma_{rm up}=10$ and $100$, we study a secondary particle energization process that takes place inside compressing plasmoids. We demonstrate that plasmoids grow in time, while their interiors compress, amplifying the internal magnetic field. The magnetic field felt by particles injected in an isolated plasmoid increases linearly with time, which leads to particle energization as a result of magnetic moment conservation. For particles injected with a power-law distribution function, this energization process acts in such a way that the shape of the injected power law is conserved, while producing an additional non-thermal tail $f(E)propto E^{-3}$ at higher energies followed by an exponential cutoff. The cutoff energy, which increases with time as $E_{rm cut}proptosqrt{t}$, can greatly exceed $sigma_{rm up} m_e c^2$. We analytically predict the secondary acceleration timescale and the shape of the emerging particle energy spectrum, which can be of major importance in certain astrophysical systems, such as blazar jets.
125 - F. Pucci , S.Usami , H. Ji 2018
Electron dynamics and energization are one of the key components of magnetic field dissipation in collisionless reconnection. In 2D numerical simulations of magnetic reconnection, the main mechanism that limits the current density and provides an eff ective dissipation is most probably the electron pressure tensor term, that has been shown to break the frozen-in condition at the x-point. In addition, the electron-meandering-orbit scale controls the width of the electron dissipation region, where the electron temperature has been observed to increase both in recent Magnetospheric Multiple-Scale (MMS) observations as well as in laboratory experiments, such as the Magnetic Reconnection Experiment (MRX). By means of two-dimensional full-particle simulations in an open system, we investigate how the energy conversion and particle energization depend on the guide field intensity. We study the energy transfer from magnetic field to the plasma, ${bf E}cdot {bf J}$ and the threshold guide field separating two regimes where either the parallel component, $E_{||}J_{||}$, or the perpendicular component, ${bf E}_{perp}cdot {bf J}_{perp}$, dominate the energy transfer, confirming recent MRX results and also consistent with MMS observations. We calculate the energy partition between fields, kinetic, and thermal energy of different species, from electron to ion scales, showing there is no significant variation for different guide field configurations. Finally we study possible mechanisms for electron perpendicular heating by examining electron distribution functions and self-consistently evolved particle orbits in high guide field configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا