ﻻ يوجد ملخص باللغة العربية
We consider the observational constraints on stupendously large black holes (SLABs) in the mass range $M gtrsim 10^{11},M_{odot}$. These have attracted little attention hitherto and we are aware of no published constraints on a SLAB population in the range $(10^{12}$ - $10^{18}),M_{odot}$. However, there is already evidence for black holes of up to nearly $10^{11},M_{odot}$ in galactic nuclei, so it is conceivable that SLABs exist and they may even have been seeded by primordial black holes. We focus on limits associated with (i) dynamical and lensing effects, (ii) the generation of background radiation through the accretion of gas during the pregalactic epoch, and (iii) the gamma-ray emission from the annihilation of the halo of weakly interacting massive particles (WIMPs) expected to form around each SLAB if these provide the dark matter. Finally, we comment on the constraints on the mass of ultra-light bosons from future measurements of the mass and spin of SLABs.
We give an explanation for the signal detected by NANOGrav as the stochastic gravitational wave background from binary mergers of primordial Stupendously Large Black Holes (SLABs) of mass $Msim(10^{11}-10^{12})M_{odot}$, and corresponding to roughly
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation,
The fraction of the Universe going into primordial black holes (PBHs) with initial mass M_* approx 5 times 10^{14} g, such that they are evaporating at the present epoch, is strongly constrained by observations of both the extragalactic and Galactic
The renewed interest in the possibility that primordial black holes (PBHs) may constitute a significant part of the dark matter has motivated revisiting old observational constraints, as well as developing new ones. We present new limits on the PBH a
The detection of binary black hole coalescences by LIGO/Virgo has aroused the interest in primordial black holes (PBHs), because they could be both the progenitors of these black holes and a compelling candidate of dark matter (DM). PBHs are formed s