ﻻ يوجد ملخص باللغة العربية
The agreement between calculations inspired by the resummation of energy logarithms, known as BFKL approach, and experimental data in the semi-hard sector of QCD has become manifest after a wealthy series of phenomenological analyses. However, the contingency that the same data could be concurrently portrayed at the hand of fixed-order, DGLAP-based calculations, has been pointed out recently, but not yet punctually addressed. Taking advantage of the richness of configurations gained by combining the acceptances of CMS and CASTOR detectors, we give results in the full next-to-leading logarithmic approximation of cross sections, azimuthal correlations and azimuthal distributions for three distinct semi-hard processes, each of them featuring a peculiar final-state exclusiveness. Then, making use of disjoint intervals for the transverse momenta of the emitted objects, i.e. $kappa$-windows, we clearly highlight how high-energy resummed and fixed-order driven predictions for semi-hard sensitive observables can be decisively discriminated in the kinematic ranges typical of current and forthcoming analyses at the LHC. The scale-optimization issue is also introduced and explored, while the uncertainty coming from the use of different PDF and FF set is deservedly handled. Finally, a brief overview of JETHAD, a numerical tool recently developed, suited for the computation of inclusive semi-hard reactions is provided.
We discuss whether the behaviour of some hadronic quantities, such as the total cross-section, the ratio of the elastic to the total cross-section, are presently exhibiting the asymptotic behaviour expected at very large energies. We find phenomenolo
We outline a strategy of how to search for QCD instantons of invariant mass 20 -- 60 GeV in diffractive events in low luminosity runs at the LHC. We show that by imposing appropriate selection criteria on the final states, one can select the kinemati
We investigate the search for heavy Majorana neutrinos stemming from a composite model scenario at the upcoming LHC Run II at a center of mass energy of 13 TeV. While previous studies of the composite Majorana neutrino were focussed on gauge interact
The MoEDAL experiment at the LHC is optimised to detect highly-ionising particles such as magnetic monopoles, dyons and (multiply) electrically-charged stable massive particles predicted in a number of theoretical scenarios. MoEDAL, deployed in the L
We calculate cross section and azimuthal decorrellation of Mueller Navelet jets at the LHC in the complete next-lo-leading order BFKL framework, i.e. including next-to-leading corrections to the Greens function as well as next-to-leading corrections