ترغب بنشر مسار تعليمي؟ اضغط هنا

Imitation learning based on entropy-regularized forward and inverse reinforcement learning

386   0   0.0 ( 0 )
 نشر من قبل Eiji Uchibe
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes Entropy-Regularized Imitation Learning (ERIL), which is a combination of forward and inverse reinforcement learning under the framework of the entropy-regularized Markov decision process. ERIL minimizes the reverse Kullback-Leibler (KL) divergence between two probability distributions induced by a learner and an expert. Inverse reinforcement learning (RL) in ERIL evaluates the log-ratio between two distributions using the density ratio trick, which is widely used in generative adversarial networks. More specifically, the log-ratio is estimated by building two binary discriminators. The first discriminator is a state-only function, and it tries to distinguish the state generated by the forward RL step from the experts state. The second discriminator is a function of current state, action, and transitioned state, and it distinguishes the generated experiences from the ones provided by the expert. Since the second discriminator has the same hyperparameters of the forward RL step, it can be used to control the discriminators ability. The forward RL minimizes the reverse KL estimated by the inverse RL. We show that minimizing the reverse KL divergence is equivalent to finding an optimal policy under entropy regularization. Consequently, a new policy is derived from an algorithm that resembles Dynamic Policy Programming and Soft Actor-Critic. Our experimental results on MuJoCo-simulated environments show that ERIL is more sample-efficient than such previous methods. We further apply the method to human behaviors in performing a pole-balancing task and show that the estimated reward functions show how every subject achieves the goal.



قيم البحث

اقرأ أيضاً

Model-based reinforcement learning (MBRL) is widely seen as having the potential to be significantly more sample efficient than model-free RL. However, research in model-based RL has not been very standardized. It is fairly common for authors to expe riment with self-designed environments, and there are several separate lines of research, which are sometimes closed-sourced or not reproducible. Accordingly, it is an open question how these various existing MBRL algorithms perform relative to each other. To facilitate research in MBRL, in this paper we gather a wide collection of MBRL algorithms and propose over 18 benchmarking environments specially designed for MBRL. We benchmark these algorithms with unified problem settings, including noisy environments. Beyond cataloguing performance, we explore and unify the underlying algorithmic differences across MBRL algorithms. We characterize three key research challenges for future MBRL research: the dynamics bottleneck, the planning horizon dilemma, and the early-termination dilemma. Finally, to maximally facilitate future research on MBRL, we open-source our benchmark in http://www.cs.toronto.edu/~tingwuwang/mbrl.html.
We study the problem of programmatic reinforcement learning, in which policies are represented as short programs in a symbolic language. Programmatic policies can be more interpretable, generalizable, and amenable to formal verification than neural p olicies; however, designing rigorous learning approaches for such policies remains a challenge. Our approach to this challenge -- a meta-algorithm called PROPEL -- is based on three insights. First, we view our learning task as optimization in policy space, modulo the constraint that the desired policy has a programmatic representation, and solve this optimization problem using a form of mirror descent that takes a gradient step into the unconstrained policy space and then projects back onto the constrained space. Second, we view the unconstrained policy space as mixing neural and programmatic representations, which enables employing state-of-the-art deep policy gradient approaches. Third, we cast the projection step as program synthesis via imitation learning, and exploit contemporary combinatorial methods for this task. We present theoretical convergence results for PROPEL and empirically evaluate the approach in three continuous control domains. The experiments show that PROPEL can significantly outperform state-of-the-art approaches for learning programmatic policies.
We present a training pipeline for the autonomous driving task given the current camera image and vehicle speed as the input to produce the throttle, brake, and steering control output. The simulator Airsims convenient weather and lighting API provid es a sufficient diversity during training which can be very helpful to increase the trained policys robustness. In order to not limit the possible policys performance, we use a continuous and deterministic control policy setting. We utilize ResNet-34 as our actor and critic networks with some slight changes in the fully connected layers. Considering humans mastery of this task and the high-complexity nature of this task, we first use imitation learning to mimic the given human policy and leverage the trained policy and its weights to the reinforcement learning phase for which we use DDPG. This combination shows a considerable performance boost comparing to both pure imitation learning and pure DDPG for the autonomous driving task.
91 - Ce Ju 2019
The goal of the inverse reinforcement learning (IRL) problem is to recover the reward functions from expert demonstrations. However, the IRL problem like any ill-posed inverse problem suffers the congenital defect that the policy may be optimal for m any reward functions, and expert demonstrations may be optimal for many policies. In this work, we generalize the IRL problem to a well-posed expectation optimization problem stochastic inverse reinforcement learning (SIRL) to recover the probability distribution over reward functions. We adopt the Monte Carlo expectation-maximization (MCEM) method to estimate the parameter of the probability distribution as the first solution to the SIRL problem. The solution is succinct, robust, and transferable for a learning task and can generate alternative solutions to the IRL problem. Through our formulation, it is possible to observe the intrinsic property for the IRL problem from a global viewpoint, and our approach achieves a considerable performance on the objectworld.
We show that a critical vulnerability in adversarial imitation is the tendency of discriminator networks to learn spurious associations between visual features and expert labels. When the discriminator focuses on task-irrelevant features, it does not provide an informative reward signal, leading to poor task performance. We analyze this problem in detail and propose a solution that outperforms standard Generative Adversarial Imitation Learning (GAIL). Our proposed method, Task-Relevant Adversarial Imitation Learning (TRAIL), uses constrained discriminator optimization to learn informative rewards. In comprehensive experiments, we show that TRAIL can solve challenging robotic manipulation tasks from pixels by imitating human operators without access to any task rewards, and clearly outperforms comparable baseline imitation agents, including those trained via behaviour cloning and conventional GAIL.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا