ترغب بنشر مسار تعليمي؟ اضغط هنا

Binary Black Hole Mergers from LIGO/Virgo O1 and O2: Population Inference Combining Confident and Marginal Events

151   0   0.0 ( 0 )
 نشر من قبل Javier Roulet
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a statistical inference of the astrophysical population of binary black hole (BBH) mergers observed during the first two observing runs of Advanced LIGO and Advanced Virgo, including events reported in the GWTC-1 and IAS catalogs. We derive a novel formalism to fully and consistently account for events of arbitrary significance. We carry out a software injection campaign to obtain a set of mock astrophysical events subject to our selection effects, and use the search background to compute the astrophysical probabilities $p_{rm astro}$ of candidate events for several phenomenological models of the BBH population. We emphasize that the values of $p_{rm astro}$ depend on both the astrophysical and background models. Finally, we combine the information from individual events to infer the rate, spin, mass, mass-ratio and redshift distributions of the mergers. The existing population does not discriminate between random spins with a spread in the effective spin parameter, and a small but nonzero fraction of events from tidally-torqued stellar progenitors. The mass distribution is consistent with one having a cutoff at $m_{rm max} = 41^{+10}_{-5},rm M_odot$, while the mass ratio favors equal masses; the mean mass ratio $bar q> 0.67$. The rate shows no significant evolution with redshift. We show that the merger rate restricted to BBHs with a primary mass between 20 and $30, rm M_odot$, and a mass ratio $q > 0.5$, and at $z sim 0.2$, is 1.5 to $5.3,{rm Gpc^{-3} yr^{-1}}$ (90% c.l.); these bounds are model independent and a factor of $sim 3$ tighter than that on the local rate of all BBH mergers, and hence are a robust constraint on all progenitor models. Including the events in our catalog increases the Fisher information about the BBH population by $sim 47%$, and tightens the constraints on population parameters.

قيم البحث

اقرأ أيضاً

All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported from the O1/O2 runs have near zero effective spins. There are only three potential explanations of this fact. If the BH spin magnitudes are large then (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Or, (iii) the BH spin magnitudes are small. We test the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, include revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can match simultaneously the observed BH-BH merger rate density, BH masses, and effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be a key in better reproducing the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely overestimated if the merger GW170729 hosts a BH more massive than 50 Msun. We also estimate rate of BH-NS mergers from recent LIGO/Virgo observations. Our updated models of BH-BH, BH-NS and NS-NS mergers are now publicly available at www.syntheticuniverse.org.
Fermi-Gamma-ray Burst Monitor observed a 1 s long gamma-ray signal (GW150914-GBM) starting 0.4 s after the first gravitational wave detection from the binary black hole merger GW150914. GW150914-GBM is consistent with a short gamma-ray burst origin; however, no unambiguous claims can be made as to the physical association of the two signals due to a combination of low gamma-ray flux and unfavorable location for Fermi-GBM. Here we answer the following question: if GW150914 and GW150914-GBM were associated, how many LIGO-Virgo binary black hole mergers would Fermi-GBM have to follow up to detect a second source? To answer this question, we perform simulated observations of binary black hole mergers with LIGO-Virgo and adopt different scenarios for gamma-ray emission from the literature. We calculate the ratio of simulated binary black hole mergers detected by LIGO-Virgo to the number of gamma-ray counterpart detections by Fermi-GBM, BBH-to-GRB ratio. A large majority of the models considered here predict a BBH-to-GRB ratio in the range of 5 to 20, but for optimistic cases can be as low as 2 or for pessimistic assumptions as high as 700. Hence we expect that the third observing run, with its high rate of binary black hole detections and assuming the absence of a joint detection, will provide strong constraints on the presented models.
The distribution of effective spin $chi_{rm eff}$, a parameter that encodes the degree of spin-orbit alignment in a binary system, has been widely regarded as a robust discriminator between the isolated and dynamical formation pathways for merging bi nary black holes. Until the recent release of the GWTC-2 catalog, such tests have yielded inconclusive results due to the small number of events with measurable nonzero spins. In this work, we study the $chi_{rm eff}$ distribution of the binary black holes detected in the LIGO-Virgo O1-O3a observing runs. Our focus is on the degree to which the $chi_{rm eff}$ distribution is symmetric about $chi_{rm eff} = 0$ and whether the data provides support for a population of negative-$chi_{rm eff}$ systems. We find that the $chi_{rm eff}$ distribution is asymmetric at 95% credibility, with an excess of aligned-spin binary systems ($chi_{rm eff}>0$) over anti-aligned ones. Moreover, we find that there is no evidence for negative-$chi_{rm eff}$ systems in the current population of binary black holes. Thus, based solely on the $chi_{rm eff}$ distribution, dynamical formation is disfavored as being responsible for the entirety of the observed merging binary black holes, while isolated formation remains viable. We also study the mass distribution of the current binary black hole population, confirming that a single truncated power law distribution in the primary source-frame mass, $m_1^{rm src}$, fails to describe the observations. Instead, we find that the preferred models have a steep feature at $m_1^{rm src} sim 40 ,rm M_odot$ consistent with a step and an extended, shallow tail to high masses.
A transient gravitational-wave signal, GW150914, was identified in the twin Advanced LIGO detectors on September 14, 2015 at 09:50:45 UTC. To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 d around the time of the signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false alarm rate (FAR) of $< 4.9 times 10^{-6} , mathrm{yr}^{-1}$, yielding a $p$-value for GW150914 of $< 2 times 10^{-7}$. Parameter estimation followup on this trigger identifies its source as a binary black hole (BBH) merger with component masses $(m_1, m_2) = left(36^{+5}_{-4},29^{+4}_{-4}right) , M_odot$ at redshift $z = 0.09^{+0.03}_{-0.04}$ (median and 90% credible range). Here we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the Universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between $2$--$53 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ (comoving frame). Incorporating all search triggers that pass a much lower threshold while accounting for the uncertainty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from $13$--$600 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ depending on assumptions about the BBH mass distribution. All together, our various rate estimates fall in the conservative range $2$--$600 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$.
We study the population properties of merging binary black holes in the second LIGO--Virgo Gravitational-Wave Transient Catalog assuming they were all formed dynamically in gravitationally bound clusters. Using a phenomenological population model, we infer the mass and spin distribution of first-generation black holes, while self-consistently accounting for hierarchical mergers. Considering a range of cluster masses, we see compelling evidence for hierarchical mergers in clusters with escape velocities $gtrsim 100~mathrm{km,s^{-1}}$. For our most probable cluster mass, we find that the catalog contains at least one second-generation merger with $99%$ credibility. We find that the hierarchical model is preferred over an alternative model with no hierarchical mergers (Bayes factor $mathcal{B} > 1400$) and that GW190521 is favored to contain two second-generation black holes with odds $mathcal{O}>700$, and GW190519, GW190602, GW190620, and GW190706 are mixed-generation binaries with $mathcal{O} > 10$. However, our results depend strongly on the cluster escape velocity, with more modest evidence for hierarchical mergers when the escape velocity is $lesssim 100~mathrm{km,s^{-1}}$. Assuming that all binary black holes are formed dynamically in globular clusters with escape velocities on the order of tens of $mathrm{km,s^{-1}}$, GW190519 and GW190521 are favored to include a second-generation black hole with odds $mathcal{O}>1$. In this case, we find that $99%$ of black holes from the inferred total population have masses that are less than $49,M_{odot}$, and that this constraint is robust to our choice of prior on the maximum black hole mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا