ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nakano-Nishijima-Gell-Mann Formula From Discrete Galois Fields

118   0   0.0 ( 0 )
 نشر من قبل Keiji Nakatsugawa
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The well known Nakano-Nishijima-Gell-Mann (NNG) formula relates certain quantum numbers of elementary particles to their charge number. This equation, which phenomenologically introduces the quantum numbers $I_z$ (isospin), $S$ (strangeness), etc., is constructed using group theory with real numbers $mathbb{R}$. But, using a discrete Galois field $mathbb{F}_p$ instead of $mathbb{R}$ and assuring the fundamental invariance laws such as unitarity, Lorentz invariance, and gauge invariance, we derive the NNG formula deductively from Meson (two quarks) and Baryon (three quarks) representations in a unified way. Moreover, we show that quark confinement ascribes to the inevitable fractionality caused by coprimeness between half-integer (1/2) of isospin and number of composite particles (e.g. three).



قيم البحث

اقرأ أيضاً

This article summarizes some of the most important scientific contributions of Murray Gell-Mann (1929-2019). (Invited article for Current Science, Indian Academy of Sciences.)
The next to leading order chiral corrections to the $SU(2)times SU(2)$ Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) inco rporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, $delta_pi$, the value $delta_pi = (6.2, pm 1.6)%$. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate $<0|bar{u} u|0> simeq <0|bar{d} d|0> equiv <0|bar{q} q|0>|_{2,mathrm{GeV}} = (- 267 pm 5 MeV)^3$. As a byproduct, the chiral perturbation theory (unphysical) low energy constant $H^r_2$ is predicted to be $H^r_2 ( u_chi = M_rho) = - (5.1 pm 1.8)times 10^{-3}$, or $H^r_2 ( u_chi = M_eta) = - (5.7 pm 2.0)times 10^{-3}$.
110 - A. L. Kataev 2015
The semi-analytical expression for the forth coefficient of the renormalization group $beta$-function in the ${rm{V}}$-scheme is obtained in the case of the $SU(N_c)$ gauge group. In the process of calculations we use the three-loop perturbative appr oximation for the QCD static potential, evaluated in the $rm{overline{MS}}$-scheme. The importance of getting more detailed expressions for the $n_f$-independent three-loop contribution to the static potential,obtained at present by two groups, is emphasised. The comparison of the numerical structure of the four-loop approximations for the RG $beta$- function of QCD in the gauge-independent ${rm{V}}$- and $rm{overline{MS}}$-schemes and in the minimal MOM scheme in the Landau gauge are presented. Considering the limit of QED with $N$-types of leptons we discover that the $beta^{rm{V}}$-function is starting to differ from the Gell-Mann--Low function $Psi(alpha_{rm{MOM}})$ at the level of the forth-order perturbative corrections, receiving the proportional to $N^2$ additional term. Taking this feature into account, we propose to consider the $beta^{rm{V}}$-function as the most theoretically substantiated analog of the Gell-Man--Low function in QCD.
The Gell-Mann grading, one of the four gradings of sl(3,C) that cannot be further refined, is considered as the initial grading for the graded contraction procedure. Using the symmetries of the Gell-Mann grading, the system of contraction equations i s reduced and solved. Each non-trivial solution of this system determines a Lie algebra which is not isomorphic to the original algebra sl(3,C). The resulting 53 contracted algebras are divided into two classes - the first is represented by the algebras which are also continuous Inonu-Wigner contractions, the second is formed by the discrete graded contractions.
This work was carried out in 1985. It was published in Russian in Yad. Fiz. 44, 498 (1986) [English translation Sov. J. Nucl. Phys. 44, 321 (1986)]. None of these publications are available on-line. Submitting this paper to ArXiv will make it accessi ble. *** A simple method is developed that makes it possible to determine the $k$-loop coefficient of the $beta$-function if the operator product expansion for certain polarization operators in the $(k -1)$ loop is known. The calculation of the two-loop coefficient of the Gell-Mann-Low function becomes trivial -- it reduces to a few algebraic operations on already known expressions. As examples, spinor, scalar, and supersymmetric electrodynamics are considered. Although the respective results for $beta^{(2)}$ are known in the literature, both the method of calculation and certain points pertaining to the construction of the operator product expansion are new.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا