ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Flow-based Feature Warping for Face Frontalization with Illumination Inconsistent Supervision

155   0   0.0 ( 0 )
 نشر من قبل Yuxiang Wei
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite recent advances in deep learning-based face frontalization methods, photo-realistic and illumination preserving frontal face synthesis is still challenging due to large pose and illumination discrepancy during training. We propose a novel Flow-based Feature Warping Model (FFWM) which can learn to synthesize photo-realistic and illumination preserving frontal images with illumination inconsistent supervision. Specifically, an Illumination Preserving Module (IPM) is proposed to learn illumination preserving image synthesis from illumination inconsistent image pairs. IPM includes two pathways which collaborate to ensure the synthesized frontal images are illumination preserving and with fine details. Moreover, a Warp Attention Module (WAM) is introduced to reduce the pose discrepancy in the feature level, and hence to synthesize frontal images more effectively and preserve more details of profile images. The attention mechanism in WAM helps reduce the artifacts caused by the displacements between the profile and the frontal images. Quantitative and qualitative experimental results show that our FFWM can synthesize photo-realistic and illumination preserving frontal images and performs favorably against the state-of-the-art results.



قيم البحث

اقرأ أيضاً

Recent advances in deep convolutional neural networks (DCNNs) have shown impressive performance improvements on thermal to visible face synthesis and matching problems. However, current DCNN-based synthesis models do not perform well on thermal faces with large pose variations. In order to deal with this problem, heterogeneous face frontalization methods are needed in which a model takes a thermal profile face image and generates a frontal visible face. This is an extremely difficult problem due to the large domain as well as large pose discrepancies between the two modalities. Despite its applications in biometrics and surveillance, this problem is relatively unexplored in the literature. We propose a domain agnostic learning-based generative adversarial network (DAL-GAN) which can synthesize frontal views in the visible domain from thermal faces with pose variations. DAL-GAN consists of a generator with an auxiliary classifier and two discriminators which capture both local and global texture discriminations for better synthesis. A contrastive constraint is enforced in the latent space of the generator with the help of a dual-path training strategy, which improves the feature vector discrimination. Finally, a multi-purpose loss function is utilized to guide the network in synthesizing identity preserving cross-domain frontalization. Extensive experimental results demonstrate that DAL-GAN can generate better quality frontal views compared to the other baseline methods.
In real-world scenarios, many factors may harm face recognition performance, e.g., large pose, bad illumination,low resolution, blur and noise. To address these challenges, previous efforts usually first restore the low-quality faces to high-quality ones and then perform face recognition. However, most of these methods are stage-wise, which is sub-optimal and deviates from the reality. In this paper, we address all these challenges jointly for unconstrained face recognition. We propose an Multi-Degradation Face Restoration (MDFR) model to restore frontalized high-quality faces from the given low-quality ones under arbitrary facial poses, with three distinct novelties. First, MDFR is a well-designed encoder-decoder architecture which extracts feature representation from an input face image with arbitrary low-quality factors and restores it to a high-quality counterpart. Second, MDFR introduces a pose residual learning strategy along with a 3D-based Pose Normalization Module (PNM), which can perceive the pose gap between the input initial pose and its real-frontal pose to guide the face frontalization. Finally, MDFR can generate frontalized high-quality face images by a single unified network, showing a strong capability of preserving face identity. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks demonstrate the superiority of MDFR over state-of-the-art methods on both face frontalization and face restoration.
We address the challenging problem of RGB image-based head pose estimation. We first reformulate head pose representation learning to constrain it to a bounded space. Head pose represented as vector projection or vector angles shows helpful to improv ing performance. Further, a ranking loss combined with MSE regression loss is proposed. The ranking loss supervises a neural network with paired samples of the same person and penalises incorrect ordering of pose prediction. Analysis on this new loss function suggests it contributes to a better local feature extractor, where features are generalised to Abstract Landmarks which are pose-related features instead of pose-irrelevant information such as identity, age, and lighting. Extensive experiments show that our method significantly outperforms the current state-of-the-art schemes on public datasets: AFLW2000 and BIWI. Our model achieves significant improvements over previous SOTA MAE on AFLW2000 and BIWI from 4.50 to 3.66 and from 4.0 to 3.71 respectively. Source code will be made available at: https://github.com/seathiefwang/RankHeadPose.
In this work, we investigate several methods and strategies to learn deep embeddings for face recognition, using joint sample- and set-based optimization. We explain our framework that expands traditional learning with set-based supervision together with the strategies used to maintain set characteristics. We, then, briefly review the related set-based loss functions, and subsequently propose a novel Max-Margin Loss which maximizes maximum possible inter-class margin with assistance of Support Vector Machines (SVMs). It implicitly pushes all the samples towards correct side of the margin with a vector perpendicular to the hyperplane and a strength exponentially growing towards to negative side of the hyperplane. We show that the introduced loss outperform the previous sample-based and set-based ones in terms verification of faces on two commonly used benchmarks.
Nowadays, the increasingly growing number of mobile and computing devices has led to a demand for safer user authentication systems. Face anti-spoofing is a measure towards this direction for bio-metric user authentication, and in particular face rec ognition, that tries to prevent spoof attacks. The state-of-the-art anti-spoofing techniques leverage the ability of deep neural networks to learn discriminative features, based on cues from the training set images or video samples, in an effort to detect spoof attacks. However, due to the particular nature of the problem, i.e. large variability due to factors like different backgrounds, lighting conditions, camera resolutions, spoof materials, etc., these techniques typically fail to generalize to new samples. In this paper, we explicitly tackle this problem and propose a class-conditional domain discriminator module, that, coupled with a gradient reversal layer, tries to generate live and spoof features that are discriminative, but at the same time robust against the aforementioned variability factors. Extensive experimental analysis shows the effectiveness of the proposed method over existing image- and video-based anti-spoofing techniques, both in terms of numerical improvement as well as when visualizing the learned features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا