ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Deep Convolutional Embeddings for Face Representation Using Joint Sample- and Set-based Supervision

123   0   0.0 ( 0 )
 نشر من قبل Baris Gecer
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we investigate several methods and strategies to learn deep embeddings for face recognition, using joint sample- and set-based optimization. We explain our framework that expands traditional learning with set-based supervision together with the strategies used to maintain set characteristics. We, then, briefly review the related set-based loss functions, and subsequently propose a novel Max-Margin Loss which maximizes maximum possible inter-class margin with assistance of Support Vector Machines (SVMs). It implicitly pushes all the samples towards correct side of the margin with a vector perpendicular to the hyperplane and a strength exponentially growing towards to negative side of the hyperplane. We show that the introduced loss outperform the previous sample-based and set-based ones in terms verification of faces on two commonly used benchmarks.

قيم البحث

اقرأ أيضاً

131 - Guangwei Gao , Yi Yu , Jian Yang 2021
Cross-resolution face recognition (CRFR), which is important in intelligent surveillance and biometric forensics, refers to the problem of matching a low-resolution (LR) probe face image against high-resolution (HR) gallery face images. Existing shal low learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space where the resolution discrepancy is mitigated. However, little works consider how to extract and utilize the intermediate discriminative features from the noisy LR query faces to further mitigate the resolution discrepancy due to the resolution limitations. In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR. In particular, our contributions are threefold. (i) To learn more robust and discriminative features, we desire to adaptively fuse the contextual features from different layers. (ii) To fully exploit these contextual features, we design a feature set-based representation learning (FSRL) scheme to collaboratively represent the hierarchical features for more accurate recognition. Moreover, FSRL utilizes the primitive form of feature maps to keep the latent structural information, especially in noisy cases. (iii) To further promote the recognition performance, we desire to fuse the hierarchical recognition outputs from different stages. Meanwhile, the discriminability from different scales can also be fully integrated. By exploiting these advantages, the efficiency of the proposed method can be delivered. Experimental results on several face datasets have verified the superiority of the presented algorithm to the other competitive CRFR approaches.
Face representation is a crucial step of face recognition systems. An optimal face representation should be discriminative, robust, compact, and very easy-to-implement. While numerous hand-crafted and learning-based representations have been proposed , considerable room for improvement is still present. In this paper, we present a very easy-to-implement deep learning framework for face representation. Our method bases on a new structure of deep network (called Pyramid CNN). The proposed Pyramid CNN adopts a greedy-filter-and-down-sample operation, which enables the training procedure to be very fast and computation-efficient. In addition, the structure of Pyramid CNN can naturally incorporate feature sharing across multi-scale face representations, increasing the discriminative ability of resulting representation. Our basic network is capable of achieving high recognition accuracy ($85.8%$ on LFW benchmark) with only 8 dimension representation. When extended to feature-sharing Pyramid CNN, our system achieves the state-of-the-art performance ($97.3%$) on LFW benchmark. We also introduce a new benchmark of realistic face images on social network and validate our proposed representation has a good ability of generalization.
In this paper, we propose a novel face alignment method that trains deep convolutional network from coarse to fine. It divides given landmarks into principal subset and elaborate subset. We firstly keep a large weight for principal subset to make our network primarily predict their locations while slightly take elaborate subset into account. Next the weight of principal subset is gradually decreased until two subsets have equivalent weights. This process contributes to learn a good initial model and search the optimal model smoothly to avoid missing fairly good intermediate models in subsequent procedures. On the challenging COFW dataset [1], our method achieves 6.33% mean error with a reduction of 21.37% compared with the best previous result [2].
Despite recent advances in deep learning-based face frontalization methods, photo-realistic and illumination preserving frontal face synthesis is still challenging due to large pose and illumination discrepancy during training. We propose a novel Flo w-based Feature Warping Model (FFWM) which can learn to synthesize photo-realistic and illumination preserving frontal images with illumination inconsistent supervision. Specifically, an Illumination Preserving Module (IPM) is proposed to learn illumination preserving image synthesis from illumination inconsistent image pairs. IPM includes two pathways which collaborate to ensure the synthesized frontal images are illumination preserving and with fine details. Moreover, a Warp Attention Module (WAM) is introduced to reduce the pose discrepancy in the feature level, and hence to synthesize frontal images more effectively and preserve more details of profile images. The attention mechanism in WAM helps reduce the artifacts caused by the displacements between the profile and the frontal images. Quantitative and qualitative experimental results show that our FFWM can synthesize photo-realistic and illumination preserving frontal images and performs favorably against the state-of-the-art results.
In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an expert-designed generative model that serves as decoder. The core innovation is our new differentiable parametric decoder that encapsulates image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic meaning that encodes detailed face pose, shape, expression, skin reflectance and scene illumination. Due to this new way of combining CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in an unsupervised manner, which renders training on very large (unlabeled) real world data feasible. The obtained reconstructions compare favorably to current state-of-the-art approaches in terms of quality and richness of representation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا