ﻻ يوجد ملخص باللغة العربية
Planning is one of the main approaches used to improve agents working efficiency by making plans beforehand. However, during planning, agents face the risk of having their private information leaked. This paper proposes a novel strong privacy-preserving planning approach for logistic-like problems. This approach outperforms existing approaches by addressing two challenges: 1) simultaneously achieving strong privacy, completeness and efficiency, and 2) addressing communication constraints. These two challenges are prevalent in many real-world applications including logistics in military environments and packet routing in networks. To tackle these two challenges, our approach adopts the differential privacy technique, which can both guarantee strong privacy and control communication overhead. To the best of our knowledge, this paper is the first to apply differential privacy to the field of multi-agent planning as a means of preserving the privacy of agents for logistic-like problems. We theoretically prove the strong privacy and completeness of our approach and empirically demonstrate its efficiency. We also theoretically analyze the communication overhead of our approach and illustrate how differential privacy can be used to control it.
We present a scalable tree search planning algorithm for large multi-agent sequential decision problems that require dynamic collaboration. Teams of agents need to coordinate decisions in many domains, but naive approaches fail due to the exponential
We give an $(varepsilon,delta)$-differentially private algorithm for the multi-armed bandit (MAB) problem in the shuffle model with a distribution-dependent regret of $Oleft(left(sum_{ain [k]:Delta_a>0}frac{log T}{Delta_a}right)+frac{ksqrt{logfrac{1}
Common datasets have the form of elements with keys (e.g., transactions and products) and the goal is to perform analytics on the aggregated form of key and frequency pairs. A weighted sample of keys by (a function of) frequency is a highly versatile
Correlation clustering is a widely used technique in unsupervised machine learning. Motivated by applications where individual privacy is a concern, we initiate the study of differentially private correlation clustering. We propose an algorithm that
The correlations and network structure amongst individuals in datasets today---whether explicitly articulated, or deduced from biological or behavioral connections---pose new issues around privacy guarantees, because of inferences that can be made ab