ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptation Algorithms for Neural Network-Based Speech Recognition: An Overview

279   0   0.0 ( 0 )
 نشر من قبل Pawel Swietojanski
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a structured overview of adaptation algorithms for neural network-based speech recognition, considering both hybrid hidden Markov model / neural network systems and end-to-end neural network systems, with a focus on speaker adaptation, domain adaptation, and accent adaptation. The overview characterizes adaptation algorithms as based on embeddings, model parameter adaptation, or data augmentation. We present a meta-analysis of the performance of speech recognition adaptation algorithms, based on relative error rate reductions as reported in the literature.


قيم البحث

اقرأ أيضاً

When only limited target domain data is available, domain adaptation could be used to promote performance of deep neural network (DNN) acoustic model by leveraging well-trained source model and target domain data. However, suffering from domain misma tch and data sparsity, domain adaptation is very challenging. This paper proposes a novel adaptation method for DNN acoustic model using class similarity. Since the output distribution of DNN model contains the knowledge of similarity among classes, which is applicable to both source and target domain, it could be transferred from source to target model for the performance improvement. In our approach, we first compute the frame level posterior probabilities of source samples using source model. Then, for each class, probabilities of this class are used to compute a mean vector, which we refer to as mean soft labels. During adaptation, these mean soft labels are used in a regularization term to train the target model. Experiments showed that our approach outperforms fine-tuning using one-hot labels on both accent and noise adaptation task, especially when source and target domain are highly mismatched.
An on-device DNN-HMM speech recognition system efficiently works with a limited vocabulary in the presence of a variety of predictable noise. In such a case, vocabulary and environment adaptation is highly effective. In this paper, we propose a novel method of end-to-end (E2E) adaptation, which adjusts not only an acoustic model (AM) but also a weighted finite-state transducer (WFST). We convert a pretrained WFST to a trainable neural network and adapt the system to target environments/vocabulary by E2E joint training with an AM. We replicate Viterbi decoding with forward--backward neural network computation, which is similar to recurrent neural networks (RNNs). By pooling output score sequences, a vocabulary posterior for each utterance is obtained and used for discriminative loss computation. Experiments using 2--10 hours of English/Japanese adaptation datasets indicate that the fine-tuning of only WFSTs and that of only AMs are both comparable to a state-of-the-art adaptation method, and E2E joint training of the two components achieves the best recognition performance. We also adapt each language system to the other language using the adaptation data, and the results show that the proposed method also works well for language adaptations.
Acoustic models in real-time speech recognition systems typically stack multiple unidirectional LSTM layers to process the acoustic frames over time. Performance improvements over vanilla LSTM architectures have been reported by prepending a stack of frequency-LSTM (FLSTM) layers to the time LSTM. These FLSTM layers can learn a more robust input feature to the time LSTM layers by modeling time-frequency correlations in the acoustic input signals. A drawback of FLSTM based architectures however is that they operate at a predefined, and tuned, window size and stride, referred to as view in this paper. We present a simple and efficient modification by combining the outputs of multiple FLSTM stacks with different views, into a dimensionality reduced feature representation. The proposed multi-view FLSTM architecture allows to model a wider range of time-frequency correlations compared to an FLSTM model with single view. When trained on 50K hours of English far-field speech data with CTC loss followed by sMBR sequence training, we show that the multi-view FLSTM acoustic model provides relative Word Error Rate (WER) improvements of 3-7% for different speaker and acoustic environment scenarios over an optimized single FLSTM model, while retaining a similar computational footprint.
We introduce the problem of adapting a black-box, cloud-based ASR system to speech from a target accent. While leading online ASR services obtain impressive performance on main-stream accents, they perform poorly on sub-populations - we observed that the word error rate (WER) achieved by Googles ASR API on Indian accents is almost twice the WER on US accents. Existing adaptation methods either require access to model parameters or overlay an error-correcting module on output transcripts. We highlight the need for correlating outputs with the original speech to fix accent errors. Accordingly, we propose a novel coupling of an open-source accent-tuned local model with the black-box service where the output from the service guides frame-level inference in the local model. Our fine-grained merging algorithm is better at fixing accent errors than existing word-level combination strategies. Experiments on Indian and Australian accents with three leading ASR models as service, show that we achieve as much as 28% relative reduction in WER over both the local and service models.
Attention-based beamformers have recently been shown to be effective for multi-channel speech recognition. However, they are less capable at capturing local information. In this work, we propose a 2D Conv-Attention module which combines convolution n eural networks with attention for beamforming. We apply self- and cross-attention to explicitly model the correlations within and between the input channels. The end-to-end 2D Conv-Attention model is compared with a multi-head self-attention and superdirective-based neural beamformers. We train and evaluate on an in-house multi-channel dataset. The results show a relative improvement of 3.8% in WER by the proposed model over the baseline neural beamformer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا