ﻻ يوجد ملخص باللغة العربية
An on-device DNN-HMM speech recognition system efficiently works with a limited vocabulary in the presence of a variety of predictable noise. In such a case, vocabulary and environment adaptation is highly effective. In this paper, we propose a novel method of end-to-end (E2E) adaptation, which adjusts not only an acoustic model (AM) but also a weighted finite-state transducer (WFST). We convert a pretrained WFST to a trainable neural network and adapt the system to target environments/vocabulary by E2E joint training with an AM. We replicate Viterbi decoding with forward--backward neural network computation, which is similar to recurrent neural networks (RNNs). By pooling output score sequences, a vocabulary posterior for each utterance is obtained and used for discriminative loss computation. Experiments using 2--10 hours of English/Japanese adaptation datasets indicate that the fine-tuning of only WFSTs and that of only AMs are both comparable to a state-of-the-art adaptation method, and E2E joint training of the two components achieves the best recognition performance. We also adapt each language system to the other language using the adaptation data, and the results show that the proposed method also works well for language adaptations.
Attention-based methods and Connectionist Temporal Classification (CTC) network have been promising research directions for end-to-end (E2E) Automatic Speech Recognition (ASR). The joint CTC/Attention model has achieved great success by utilizing bot
Recurrent neural network transducers (RNN-T) have been successfully applied in end-to-end speech recognition. However, the recurrent structure makes it difficult for parallelization . In this paper, we propose a self-attention transducer (SA-T) for s
Transformers are powerful neural architectures that allow integrating different modalities using attention mechanisms. In this paper, we leverage the neural transformer architectures for multi-channel speech recognition systems, where the spectral an
The Transformer self-attention network has recently shown promising performance as an alternative to recurrent neural networks in end-to-end (E2E) automatic speech recognition (ASR) systems. However, Transformer has a drawback in that the entire inpu
Non-autoregressive transformer models have achieved extremely fast inference speed and comparable performance with autoregressive sequence-to-sequence models in neural machine translation. Most of the non-autoregressive transformers decode the target