ﻻ يوجد ملخص باللغة العربية
The Domain Name System (DNS) was created to resolve the IP addresses of the web servers to easily remembered names. When it was initially created, security was not a major concern; nowadays, this lack of inherent security and trust has exposed the global DNS infrastructure to malicious actors. The passive DNS data collection process creates a database containing various DNS data elements, some of which are personal and need to be protected to preserve the privacy of the end users. To this end, we propose the use of distributed ledger technology. We use Hyperledger Fabric to create a permissioned blockchain, which only authorized entities can access. The proposed solution supports queries for storing and retrieving data from the blockchain ledger, allowing the use of the passive DNS database for further analysis, e.g. for the identification of malicious domain names. Additionally, it effectively protects the DNS personal data from unauthorized entities, including the administrators that can act as potential malicious insiders, and allows only the data owners to perform queries over these data. We evaluated our proposed solution by creating a proof-of-concept experimental setup that passively collects DNS data from a network and then uses the distributed ledger technology to store the data in an immutable ledger, thus providing a full historical overview of all the records.
Virtually every connection to an Internet service is preceded by a DNS lookup which is performed without any traffic-level protection, thus enabling manipulation, redirection, surveillance, and censorship. To address these issues, large organizations
In this paper, we address the problem of privacy-preserving distributed learning and the evaluation of machine-learning models by analyzing it in the widespread MapReduce abstraction that we extend with privacy constraints. We design SPINDLE (Scalabl
Point-of-Interest (POI) recommendation has been extensively studied and successfully applied in industry recently. However, most existing approaches build centralized models on the basis of collecting users data. Both private data and models are held
This document describes and analyzes a system for secure and privacy-preserving proximity tracing at large scale. This system, referred to as DP3T, provides a technological foundation to help slow the spread of SARS-CoV-2 by simplifying and accelerat
Resource Public Key Infrastructure (RPKI) is vital to the security of inter-domain routing. However, RPKI enables Regional Internet Registries (RIRs) to unilaterally takedown IP prefixes - indeed, such attacks have been launched by nation-state adver