ﻻ يوجد ملخص باللغة العربية
We demonstrate the first compact photonic flywheel with sub-fs time jitter (averaging times up to 10 {mu}s) at the quantum-noise limit of a monolithic fiber resonator. Such quantum-limited performance is accessed through novel two-step pumping scheme for dissipative Kerr soliton (DKS) generation. Controllable interaction between stimulated Brillouin lasing and Kerr nonlinearity enhances the DKS coherence and mitigate the thermal instability challenge, achieving a remarkable 22-Hz intrinsic comb linewidth and an unprecedented phase noise of -180 dBc/Hz at 945 MHz carrier at free running. The scheme can be generalized to various device platforms for field-deployable precision metrology.
We demonstrate an ultralow loss monolithic integrated lithium niobate photonic platform consisting of dry-etched subwavelength waveguides. We show microring resonators with a quality factor of 10$^7$ and waveguides with propagation loss as low as 2.7 dB/m.
Unidirectional photonic edge states arise at the interface between two topologically-distinct photonic crystals. Here, we demonstrate a micron-scale GaAs photonic ring resonator, created using a spin Hall-type topological photonic crystal waveguide.
We report on the experimental and numerical observation of polarization modulation instability (PMI) in a nonlinear fiber Kerr resonator. This phenomenon is phased-matched through the relative phase detuning between the intracavity fields associated
The frequency stability of lasers is limited by thermal noise in state-of-the-art frequency references. Further improvement requires operation at cryogenic temperature. In this context, we investigate a fiber-based ring resonator. Our system exhibits
Topological phases feature robust edge states that are protected against the effects of defects and disorder. The robustness of these states presents opportunities to design technologies that are tolerant to fabrication errors and resilient to enviro