ﻻ يوجد ملخص باللغة العربية
Band crossings observed in a wide range of condensed matter systems are recognized as a key to understand low-energy fermionic excitations that behave as massless Dirac particles. Despite rapid progress in this field, the exploration of non-equilibrium topological states remains scarce and it has potential ability of providing a new platform to create unexpected massless Dirac states. Here we show that in a semiconductor quantum-well driven by a cw-laser with linear polarization, the optical Stark effect conducts bulk-band crossing, and the resulting Floquet-Dirac semimetallic phase supports an unconventional edge state in the projected one-dimensional Brillouin zone under a boundary condition that an electron is confined in the direction perpendicular to that of the laser polarization. Further, we reveal that this edge state mediates a transition between topological and non-topological edge states that is caused by tuning the laser intensity. We also show that the properties of the edge states are strikingly changed under a different boundary condition. It is found that such difference originates from that nearly fourfold-degenerate points exist in a certain intermediate region of the bulk Brillouin zone between high-symmetry points.
Recent theoretical work on time-periodically kicked Hofstadter model found robust counter-propagating edge modes. It remains unclear how ubiquitously such anomalous modes can appear, and what dictates their robustness against disorder. Here we shed f
The results of experimental study of the magnetoresistivity, the Hall and Shubnikov-de Haas effects for the heterostructure with HgTe quantum well of 20.2 nm width are reported. The measurements were performed on the gated samples over the wide range
We report on the clear evidence of massless Dirac fermions in two-dimensional system based on III-V semiconductors. Using a gated Hall bar made on a three-layer InAs/GaSb/InAs quantum well, we restore the Landau levels fan chart by magnetotransport a
We report on Landau level spectroscopy studies of two HgTe quantum wells (QWs) near or at the critical well thickness, where the band gap vanishes. In magnetic fields up to $B$=16T, oriented perpendicular to the QW plane, we observe a $sqrt{B}$ depen
Quantum materials that host a flat band, such as pseudospin-1 lattices and magic-angle twisted bilayer graphene, can exhibit drastically new physical phenomena including unconventional superconductivity, orbital ferromagnetism, and Chern insulating b