ﻻ يوجد ملخص باللغة العربية
The results of experimental study of the magnetoresistivity, the Hall and Shubnikov-de Haas effects for the heterostructure with HgTe quantum well of 20.2 nm width are reported. The measurements were performed on the gated samples over the wide range of electron and hole densities including vicinity of a charge neutrality point. Analyzing the data we conclude that the energy spectrum is drastically different from that calculated in framework of $kP$-model. So, the hole effective mass is equal to approximately $0.2 m_0$ and practically independent of the quasimomentum ($k$) up to $k^2gtrsim 0.7times 10^{12}$ cm$^{-2}$, while the theory predicts negative (electron-like) effective mass up to $k^2=6times 10^{12}$ cm$^{-2}$. The experimental effective mass near k=0, where the hole energy spectrum is electron-like, is close to $-0.005 m_0$, whereas the theoretical value is about $-0.1 m_0$.
Black phosphorus (bP) is the second known elemental allotrope with a layered crystal structure that can be mechanically exfoliated down to atomic layer thickness. We have fabricated bP naked quantum wells in a back-gated field effect transistor geome
Quantum wells (QWs) based on mercury telluride (HgTe) thin films provide a large scale of unusual physical properties starting from an insulator via a two-dimensional Dirac semimetal to a three-dimensional topological insulator. These properties resu
The results of experimental study of interference induced magnetoconductivity in narrow quantum well HgTe with the normal energy spectrum are presented. Analysis is performed with taking into account the conductivity anisotropy. It is shown that the
The two-dimensional topological insulator phase has been observed previously in single HgTe-based quantum wells with inverted subband ordering. In double quantum wells (DQWs), coupling between the layers introduces additional degrees of freedom leadi
The microwave photoresistance of a two-dimensional topological insulator in a HgTe quantum well with an inverted spectrum has been experimentally studied under irradiation at frequencies of 110-169 GHz. Two mechanisms of formation of this photoresist