ﻻ يوجد ملخص باللغة العربية
We study the acoustical intensity field radiated by a thin cylindrical rod vibrating in its lowest compressional mode. Due to the cylindrical symmetry, the emitted field is measured in a radial plane of the rod which is sufficient to reconstruct the full three-dimensional field. Starting from the one-dimensional approximation of the excited compressional mode, we develop a simplified theoretical wave equation which allows for a semi-analytical solution for the emitted wave field. The agreement between the experimental results and the semi-analytical solution is eloquent.
The extraordinary properties of graphene make it a very promising material for use in optoelectronics. However, this is still a nascent field, where some basic properties of the electromagnetic field in graphene must be explored. Here we report on th
The synergistic effects of neutron and gamma ray radiated PNP transistors are systematically investigated as functions of the neutron fluence, gamma ray dose, and dose rate. We find that the damages show a `tick-like dependence on the gamma ray dose
Simultaneous measurements of hard X-ray by a Geiger counter and audible sound (10 Hz-20kHz) by a microphone from a thin water film in air were carried out under intense single and double pulse irradiations of femtosecond laser (35 fs, 800 nm, 1 kHz).
The ability of extreme sound energy confinement with high-quality factor (Q-factor) resonance is of vital importance for acoustic devices requiring high intensity and hypersensitivity in biological ultrasonics, enhanced collimated sound emission (i.e
Spin-orbit interactions (SOIs) endow light with intriguing properties and applications such as photonic spin-Hall effects and spin-dependent vortex generations. However, it is counterintuitive that SOIs can exist for sound, which is a longitudinal wa