ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit interactions of transverse sound

69   0   0.0 ( 0 )
 نشر من قبل Shubo Wang Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-orbit interactions (SOIs) endow light with intriguing properties and applications such as photonic spin-Hall effects and spin-dependent vortex generations. However, it is counterintuitive that SOIs can exist for sound, which is a longitudinal wave that carries no intrinsic spin. Here, we theoretically and experimentally demonstrate that airborne sound can possess artificial transversality in an acoustic micropolar metamaterial and thus carry both spin and orbital angular momentum. This enables the realization of acoustic SOIs with rich phenomena beyond those in conventional acoustic systems. We demonstrate that acoustic activity of the metamaterial can induce coupling between the spin and linear crystal momentum k, which leads to negative refraction of the transverse sound. In addition, we show that the scattering of the transverse sound by a dipole particle can generate spin-dependent acoustic vortices via the geometric phase effect. The acoustic SOIs can provide new perspectives and functionalities for sound manipulations beyond the conventional scalar degree of freedom and may open an avenue to the development of spin-orbit acoustics.



قيم البحث

اقرأ أيضاً

Current induced spin-orbit torques (SOTs) in Fe/Pt bilayers have been investigated utilizing the spin-orbit torque ferromagnetic resonance (SOT-FMR) measurement. Characterization of thin films with different thicknesses indicates existence of a sizab le field-like spin-orbit torque competing with the Oersted field induced torque (Oersted torque). The field-like torque is neglected in the standard SOT-FMR method and the presence of a strong field-like torque makes estimation of the spin Hall angle (SHA) problematic. Also, it is challenging to differentiate the field-like torque from the Oersted torque in a radiofrequency measurement. Based on the thickness dependence of field-like torque, anti-damping torque, and Oersted torque, the thickness-dependent SOT-FMR measurement is proposed as a more reliable, self-calibrated approach for characterization of spin-orbit torques.
Spin-orbit torque (SOT) can drive sustained spin wave (SW) auto-oscillations in a class of emerging microwave devices known as spin Hall nano-oscillators (SHNOs), which have highly non-linear properties governing robust mutual synchronization at freq uencies directly amenable to high-speed neuromorphic computing. However, all demonstrations have relied on localized SW modes interacting through dipolar coupling and/or direct exchange. As nanomagnonics requires propagating SWs for data transfer, and additional computational functionality can be achieved using SW interference, SOT driven propagating SWs would be highly advantageous. Here, we demonstrate how perpendicular magnetic anisotropy can raise the frequency of SOT driven auto-oscillations in magnetic nano-constrictions well above the SW gap, resulting in the efficient generation of field and current tunable propagating SWs. Our demonstration greatly extends the functionality and design freedom of SHNOs enabling long range SOT driven SW propagation for nanomagnonics, SW logic, and neuro-morphic computing, directly compatible with CMOS technology.
Reducing energy dissipation while increasing speed in computation and memory is a long-standing challenge for spintronics research. In the last 20 years, femtosecond lasers have emerged as a tool to control the magnetization in specific magnetic mate rials at the picosecond timescale. However, the use of ultrafast optics in integrated circuits and memories would require a major paradigm shift. An ultrafast electrical control of the magnetization is far preferable for integrated systems. Here we demonstrate reliable and deterministic control of the out-of-plane magnetization of a 1 nm-thick Co layer with single 6 ps-wide electrical pulses that induce spin-orbit torques on the magnetization. We can monitor the ultrafast magnetization dynamics due to the spin-orbit torques on sub-picosecond timescales, thus far accessible only by numerical simulations. Due to the short duration of our pulses, we enter a counter-intuitive regime of switching where heat dissipation assists the reversal. Moreover, we estimate a low energy cost to switch the magnetization, projecting to below 1fJ for a (20 nm)^3 cell. These experiments prove that spintronic phenomena can be exploited on picosecond time-scales for full magnetic control and should launch a new regime of ultrafast spin torque studies and applications.
This paper introduces the concept of spin-orbit-torque-MRAM (SOT-MRAM) based physical unclonable function (PUF). The secret of the PUF is stored into a random state of a matrix of perpendicular SOT-MRAMs. Here, we show experimentally and with microma gnetic simulations that this random state is driven by the intrinsic nonlinear dynamics of the free layer of the memory excited by the SOT. In detail, a large enough current drives the magnetization along an in-plane direction. Once the current is removed, the in-plane magnetic state becomes unstable evolving towards one of the two perpendicular stable configurations randomly. In addition, an hybrid CMOS/spintronics model is used to evaluate the electrical characteristics of a PUF realized with an array of 16x16 SOT-MRAM cells. Beyond robustness against voltage and temperature variations, hardware authentication based on this PUF scheme has additional advantages over other PUF technologies such as non-volatility (no power consumption in standby mode), reconfigurability (the secret can be rewritten), and scalability. We believe that this work is a step forward the design of spintronic devices for application in security.
Continuous switching driven by spin-orbit torque (SOT) is preferred to realize neuromorphic computing in a spintronic manner. Here we have applied focused ion beam (FIB) to selectively illuminate patterned regions in a Pt/Co/MgO strip with perpendicu lar magnetic anisotropy (PMA), soften the illuminated areas and realize the continuous switching by a SOT-driven nucleation process. It is found that a large in-plane field is a benefit to reduce the nucleation barrier, increase the number of nucleated domains and intermediate states during the switching progress, and finally flatten the switching curve. We proposed a phenomenological model for descripting the current dependence of magnetization and the dependence of the number of nucleation domains on the applied current and magnetic field. This study can thus promote the birth of SOT devices, which are promising in neuromorphic computing architectures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا