ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum resolved ground/excited states and the ultra-fast excited state dynamics of monolayer MoS2

74   0   0.0 ( 0 )
 نشر من قبل Woojoo Lee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emergence of transition metal dichalcogenides (TMD) as crystalline atomically thin semiconductors has created a tremendous amount of scientific and technological interest. Many novel device concepts have been proposed and realized (1-3). Nonetheless, progress in k-space investigations of ground/excited state electronic structures has been slow due to the challenge to create large scale, laterally homogeneous samples. Taking advantage of recent advancements in chemical vapor deposition, here we create a wafer-size MoS2 monolayer with well-aligned lateral orientation for advanced electron spectroscopy studies (4-6). Low energy electron diffraction and scanning tunneling microscopy (STM) demonstrate atomically clean surfaces with in-plane crystalline orientation. The ground state and excited state electronic structures are probed using scanning tunneling spectroscopy (STS), angle-resolved photoemission (ARPES) and time-resolved (tr-)ARPES. In addition to mapping out the momentum-space quasiparticle band structure in the valence and conduction bands, we unveil ultrafast excited state dynamics, including inter- and intra-valley carrier scattering and a rapid downward energy shift by ~ 0.2eV lower than the initial free carrier state at Sigma point.

قيم البحث

اقرأ أيضاً

Monolayer transition metal dichalcogenide semiconductors, with versatile experimentally accessible exciton species, offer an interesting platform for investigating the interaction between excitons and a Fermi sea of charges. Using hexagonal boron nit ride encapsulated monolayer MoSe2, we study the impact of charge density tuning on the ground and excited Rydberg states in the atomic layer. Consistent excitonpolaron behavior is revealed in both photoluminescence and reflection spectra of the A exciton 1s (A:1s) Rydberg state, in contrast to previous studies. The A:2s Rydberg state provides an opportunity to understand such interactions with greatly reduced exciton binding energy. We found that the impact of the Fermi sea becomes much more dramatic. With a photoluminescence upconversion technique, we further verify the 2s polaron-like behavior for the repulsive branch of B:2s exciton whose energy is well above the bare bandgap. Our studies show that the polaron-like interaction features are quite generic and highly robust, offering key insights into the dressed manybody state in a Fermi sea.
Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics and energy harvesting. Large-area growth methods are needed to open the way to the applications. Whil e significant progress to this goal was made, control over lattice orientation during growth still remains a challenge. This is needed in order to minimize or even avoid the formation of grain boundaries which can be detrimental to electrical, optical and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the uniform growth of high-quality centimeter-scale continuous monolayer MoS2 with control over lattice orientation. Using transmission electron microscopy we show that the monolayer film is composed of coalescing single islands that share a predominant lattice orientation due to an epitaxial growth mechanism. Raman and photoluminescence spectra confirm the high quality of the grown material. Optical absorbance spectra acquired over large areas show new features in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment, we can easily transfer the grown material and fabricate field-effect transistors on SiO2 substrates showing mobility superior to the exfoliated material.
The prospective of optically inducing a spin polarized current for spintronic devices has generated a vast interest in the out-of-equilibrium electronic and spin structure of topological insulators (TIs). In this Letter we prove that only by measurin g the spin intensity signal over several order of magnitude in spin, time and angle resolved photoemission spectroscopy (STAR-PES) experiments is it possible to comprehensively describe the optically excited electronic states in TIs materials. The experiments performed on $mathrm{Bi_{2}Se_{3}}$ reveal the existence of a Surface-Resonance-State in the 2nd bulk band gap interpreted on the basis of fully relativistic ab-initio spin resolved photoemission calculations. Remarkably, the spin dependent relaxation of the hot carriers is well reproduced by a spin dynamics model considering two non-interacting electronic systems, derived from the excited surface and bulk states, with different electronic temperatures.
178 - G. N. Ostojic , S. Zaric , J. Kono 2003
Wavelength-dependent pump-probe spectroscopy of micelle-suspended single-walled carbon nanotubes reveals two-component dynamics. The slow component (5-20 ps), which has not been observed previously, is resonantly enhanced whenever the pump photon ene rgy coincides with an absorption peak and we attribute it to interband carrier recombination, whereas we interpret the always-present fast component (0.3-1.2 ps) as intraband carrier relaxation in non-resonantly excited nanotubes. The slow component decreases drastically with decreasing pH (or increasing H$^+$ doping), especially in large-diameter tubes. This can be explained as a consequence of the disappearance of absorption peaks at high doping due to the entrance of the Fermi energy into the valence band, i.e., a 1-D manifestation of the Burstein-Moss effect.
Quantum Krylov subspace diagonalization (QKSD) algorithms provide a low-cost alternative to the conventional quantum phase estimation algorithm for estimating the ground and excited-state energies of a quantum many-body system. While QKSD algorithms have typically relied on using the Hadamard test for estimating Krylov subspace matrix elements of the form, $langle phi_i|e^{-ihat{H}tau}|phi_j rangle$, the associated quantum circuits require an ancilla qubit with controlled multi-qubit gates that can be quite costly for near-term quantum hardware. In this work, we show that a wide class of Hamiltonians relevant to condensed matter physics and quantum chemistry contain symmetries that can be exploited to avoid the use of the Hadamard test. We propose a multi-fidelity estimation protocol that can be used to compute such quantities showing that our approach, when combined with efficient single-fidelity estimation protocols, provides a substantial reduction in circuit depth. In addition, we develop a unified theory of quantum Krylov subspace algorithms and present three new quantum-classical algorithms for the ground and excited-state energy estimation problem, where each new algorithm provides various advantages and disadvantages in terms of total number of calls to the quantum computer, gate depth, classical complexity, and stability of the generalized eigenvalue problem within the Krylov subspace.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا