ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum resolved spin dynamics of bulk and surface excited states in the topological insulator $mathrm{Bi_{2}Se_{3}}$

406   0   0.0 ( 0 )
 نشر من قبل Alberto Crepaldi Mr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The prospective of optically inducing a spin polarized current for spintronic devices has generated a vast interest in the out-of-equilibrium electronic and spin structure of topological insulators (TIs). In this Letter we prove that only by measuring the spin intensity signal over several order of magnitude in spin, time and angle resolved photoemission spectroscopy (STAR-PES) experiments is it possible to comprehensively describe the optically excited electronic states in TIs materials. The experiments performed on $mathrm{Bi_{2}Se_{3}}$ reveal the existence of a Surface-Resonance-State in the 2nd bulk band gap interpreted on the basis of fully relativistic ab-initio spin resolved photoemission calculations. Remarkably, the spin dependent relaxation of the hot carriers is well reproduced by a spin dynamics model considering two non-interacting electronic systems, derived from the excited surface and bulk states, with different electronic temperatures.



قيم البحث

اقرأ أيضاً

In typical topological insulator (TI) systems the TI is bordered by a non-TI insulator, and the surrounding conventional insulators, including vacuum, are not generally treated as part of the TI system. Here, we implement the first material system wh ere the roles are reversed, and the TSS form around the non-TI (instead of the TI) layers. This is realized by growing a layer of the tunable non-TI $(Bi_{1-x}In_{x})_{2}Se_{3}$ in between two layers of the TI $Bi_2Se_3$ using the atomically-precise molecular beam epitaxy technique. On this tunable inverse topological platform, we systematically vary the thickness and the composition of the $(Bi_{1-x}In_{x})_{2}Se_{3}$ layer and show that this tunes the coupling between the TI layers from strongly-coupled metallic to weakly-coupled, and finally to a fully-decoupled insulating regime. This system can be used to probe the fundamental nature of coupling in TI materials and provides a tunable insulating layer for TI devices.
212 - Pengke Li , Ian Appelbaum 2016
Several recent experiments on three-dimensional topological insulators claim to observe a large charge current-induced non-equilibrium ensemble spin polarization of electrons in the helical surface state. We present a comprehensive criticism of such claims, using both theory and experiment: First, we clarify the interpretation of quantities extracted from these measurements by deriving standard expressions from a Boltzmann transport equation approach in the relaxation-time approximation at zero and finite temperature to emphasize our assertion that, despite high in-plane spin projection, obtainable current-induced ensemble spin polarization is minuscule. Second, we use a simple experiment to demonstrate that magnetic field-dependent open-circuit voltage hysteresis (identical to those attributed to current-induced spin polarization in topological insulator surface states) can be generated in analogous devices where current is driven through thin films of a topologically-trivial metal. This result *ipso facto* discredits the naive interpretation of previous experiments with TIs, which were used to claim observation of helicity, i.e. spin-momentum locking in the topologically-protected surface state.
We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi$_2$Te$_3$ following a femtosecond laser excitation. Using time and angle resolved photoelectron spectroscopy, we provide a direct real-time visuali sation of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few ps are necessary for the Dirac cone non-equilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.
As a methodology for controlling the carrier transport of topological insulators (TIs), a flexible tuning in carrier number on the surface states (SSs) of three dimensional TIs by surface modifications using organic molecules is described. The princi ple of the carrier tuning and its type conversion of TIs presented in this research are based on the charge transfer of holes or electrons at the TI/organic molecule interface. By employing 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as an electron acceptor or tetracyanoquinodimethane (TCNQ) as a donor for n- and p- Bi2-xSbxTe3-ySey (BSTS) single crystals, successful carrier conversion from n to p and its reverse mode is demonstrated depending on the electron affinities of the molecules. The present method provides a nondestructive and efficient method for local tuning in carrier density of TIs, and is useful for future applications.
Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect, i.e. measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (BixSb1-x)2Te3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (BixSb1-x)2Te3 to a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. The enhanced, tunable spin Seebeck effect which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual spin Seebeck effect in metals and therefore opens up exciting possibilities in spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا