ترغب بنشر مسار تعليمي؟ اضغط هنا

Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations

90   0   0.0 ( 0 )
 نشر من قبل Sergio Casas
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we propose a novel end-to-end learnable network that performs joint perception, prediction and motion planning for self-driving vehicles and produces interpretable intermediate representations. Unlike existing neural motion planners, our motion planning costs are consistent with our perception and prediction estimates. This is achieved by a novel differentiable semantic occupancy representation that is explicitly used as cost by the motion planning process. Our network is learned end-to-end from human demonstrations. The experiments in a large-scale manual-driving dataset and closed-loop simulation show that the proposed model significantly outperforms state-of-the-art planners in imitating the human behaviors while producing much safer trajectories.

قيم البحث

اقرأ أيضاً

High-definition maps (HD maps) are a key component of most modern self-driving systems due to their valuable semantic and geometric information. Unfortunately, building HD maps has proven hard to scale due to their cost as well as the requirements th ey impose in the localization system that has to work everywhere with centimeter-level accuracy. Being able to drive without an HD map would be very beneficial to scale self-driving solutions as well as to increase the failure tolerance of existing ones (e.g., if localization fails or the map is not up-to-date). Towards this goal, we propose MP3, an end-to-end approach to mapless driving where the input is raw sensor data and a high-level command (e.g., turn left at the intersection). MP3 predicts intermediate representations in the form of an online map and the current and future state of dynamic agents, and exploits them in a novel neural motion planner to make interpretable decisions taking into account uncertainty. We show that our approach is significantly safer, more comfortable, and can follow commands better than the baselines in challenging long-term closed-loop simulations, as well as when compared to an expert driver in a large-scale real-world dataset.
Motion planning and obstacle avoidance is a key challenge in robotics applications. While previous work succeeds to provide excellent solutions for known environments, sensor-based motion planning in new and dynamic environments remains difficult. In this work we address sensor-based motion planning from a learning perspective. Motivated by recent advances in visual recognition, we argue the importance of learning appropriate representations for motion planning. We propose a new obstacle representation based on the PointNet architecture and train it jointly with policies for obstacle avoidance. We experimentally evaluate our approach for rigid body motion planning in challenging environments and demonstrate significant improvements of the state of the art in terms of accuracy and efficiency.
Transformers have become the powerhouse of natural language processing and recently found use in computer vision tasks. Their effective use of attention can be used in other contexts as well, and in this paper, we propose a transformer-based approach for efficiently solving the complex motion planning problems. Traditional neural network-based motion planning uses convolutional networks to encode the planning space, but these methods are limited to fixed map sizes, which is often not realistic in the real-world. Our approach first identifies regions on the map using transformers to provide attention to map areas likely to include the best path, and then applies local planners to generate the final collision-free path. We validate our method on a variety of randomly generated environments with different map sizes, demonstrating reduction in planning complexity and achieving comparable accuracy to traditional planners.
In this paper, we outline an interleaved acting and planning technique to rapidly reduce the uncertainty of the estimated robots pose by perceiving relevant information from the environment, as recognizing an object or asking someone for a direction. Generally, existing localization approaches rely on low-level geometric features such as points, lines, and planes, while these approaches provide the desired accuracy, they may require time to converge, especially with incorrect initial guesses. In our approach, a task planner computes a sequence of action and perception tasks to actively obtain relevant information from the robots perception system. We validate our approach in large state spaces, to show how the approach scales, and in real environments, to show the applicability of our method on real robots. We prove that our approach is sound, probabilistically complete, and tractable in practical cases.
This paper considers safe robot mission planning in uncertain dynamical environments. This problem arises in applications such as surveillance, emergency rescue, and autonomous driving. It is a challenging problem due to modeling and integrating dyna mical uncertainties into a safe planning framework, and finding a solution in a computationally tractable way. In this work, we first develop a probabilistic model for dynamical uncertainties. Then, we provide a framework to generate a path that maximizes safety for complex missions by incorporating the uncertainty model. We also devise a Monte Carlo method to obtain a safe path efficiently. Finally, we evaluate the performance of our approach and compare it to potential alternatives in several case studies.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا