ﻻ يوجد ملخص باللغة العربية
Gravitational-wave observations of binary neutron star coalescences constrain the neutron-star equation of state by enabling measurement of the tidal deformation of each neutron star. This deformation is determined by the tidal deformability parameter $Lambda$, which was constrained using the first binary neutron star gravitational-wave observation, GW170817. Now, with the measurement of the second binary neutron star, GW190425, we can combine different gravitational-wave measurements to obtain tighter constraints on the neutron-star equation of state. In this paper, we combine data from GW170817 and GW190425 to place constraints on the neutron-star equation of state. To facilitate this calculation, we derive interpolated marginalized likelihoods for each event using a machine learning algorithm. These likelihoods, which we make publicly available, allow for results from multiple gravitational-wave signals to be easily combined. Using these new data products, we find that the radius of a fiducial 1.4 $M_odot$ neutron star is constrained to $11.6^{+1.6}_{-0.9}$ km at 90% confidence and the pressure at twice the nuclear saturation density is constrained to $3.1^{+3.1}_{-1.3}times10^{34}$ dyne/cm$^2$ at 90% confidence. This result is dominated by GW170817 and is consistent with findings from other works.
The observations of compact star inspirals from LIGO/Virgo provide a valuable tool to study the highly uncertain equation of state (EOS) of dense matter at the densities in which the compact stars reside. It is not clear whether the merging stars are
On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to
The first detection of gravitational waves from a neutron star-neutron star merger, GW170817, has opened up a new avenue for constraining the ultradense-matter equation of state (EOS). The deviation of the observed waveform from a point-particle wave
We report Chandra observations of GW170817, the first neutron star-neutron star merger discovered by the joint LIGO-Virgo Collaboration, and the first direct detection of gravitational radiation associated with an electromagnetic counterpart, Fermi s
Gravitational waves detected from the binary neutron star (NS) merger GW170817 constrained the NS equation of state by placing an upper bound on certain parameters describing the binarys tidal interactions. We show that the interpretation of the UV/o