ﻻ يوجد ملخص باللغة العربية
The paper describes a method of the charged particle identification, developed for the mbox{CMD-3} detector, installed at the VEPP-2000 $e^{+}e^{-}$ collider. The method is based on the application of the boosted decision trees classifiers, trained for the optimal separation of electrons, muons, pions and kaons in the momentum range from 100 to $1200~{rm MeV}/c$. The input variables for the classifiers are linear combinations of the energy depositions of charged particles in 12 layers of the liquid xenon calorimeter of the mbox{CMD-3}. The event samples for training of the classifiers are taken from the simulation. Various issues of the detector response tuning in simulation and calibration of the calorimeter strip channels are considered. Application of the method is illustrated by the examples of separation of the $e^+e^-(gamma)$ and $pi^+pi^-(gamma)$ final states and of selection of the $K^+K^-$ final state at high energies.
The Belle-II experiment and superKEKB accelerator will form a next generation B-factory at KEK, capable of running at an instantaneous luminosity 40 times higher than the Belle detector and KEKB. This will allow for the elucidation of many facets of
We have constructed a liquid Argon TPC detector with fiducial mass of 150 kg as a part of the R&D program of the next generation neutrino and nucleon decay detector. This paper describes a study of particle identification performance of the detector
This article reviews the progress made over the last 20 years in the development and applications of liquid xenon detectors in particle physics, astrophysics and medical imaging experiments. We begin with a summary of the fundamental properties of li
The EXO-200 Collaboration is searching for neutrinoless double beta decay using a liquid xenon (LXe) time projection chamber. This measurement relies on modeling the transport of charge deposits produced by interactions in the LXe to allow discrimina
A large-area Multi-Pixel Photon Counter (MPPC) sensitive to vacuum ultra violet (VUV) light has been developed for the liquid xenon (LXe) scintillation detector of the MEG II experiment. The LXe detector is designed to detect the 52.8,MeV photon from