ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle identification with the iTOP detector at Belle-II

128   0   0.0 ( 0 )
 نشر من قبل Matthew Barrett
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Matthew Barrett




اسأل ChatGPT حول البحث

The Belle-II experiment and superKEKB accelerator will form a next generation B-factory at KEK, capable of running at an instantaneous luminosity 40 times higher than the Belle detector and KEKB. This will allow for the elucidation of many facets of the Standard Model by performing precision measurements of its parameters, and provide sensitivity to many rare decays that are currently inaccessible. This will require major upgrades to both the accelerator and detector subsystems. The imaging Time-of-propagation (iTOP) detector will be a new subdetector of Belle-II that will perform an integral role in Particle identification (PID). It will comprise 16 modules between the tracking detectors and calorimeter; each module consisting of a quartz radiator, approximately 2.5m in length, instrumented with an array of 32 micro-channel plate photodetectors (MCP-PMTs). The passage of charged particles through the quartz will produce a cone of Cherenkov photons that will propagate along the length of the quartz, and be detected by the MCP-PMTs. The excellent spatial, and timing resolution (of 50 picoseconds) of the iTOP system will provide superior particle identification capabilities, particularly allowing for enhanced discrimination between pions and kaons that will be essential for many of the key measurements to performed. The status of the construction of the iTOP subdetector, and performance studies of prototypes at beam tests will be presented, together with prospects for physics measurements that will utilise the PID capabilities of the iTOP system.



قيم البحث

اقرأ أيضاً

68 - S. Longo , J.M. Roney , C. Cecchi 2020
This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an ele ctron-positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of $gamma$, $mu^+$, $pi^pm$, $K^pm$ and $p/bar{p}$ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The $K_L^0$ efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV.
82 - R. Giordano , Y. Lai , S. Korpar 2020
On-detector digital electronics in High-Energy Physics experiments is increasingly being implemented by means of SRAM-based FPGA, due to their capabilities of reconfiguration, real-time processing and multi-gigabit data transfer. Radiation-induced si ngle event upsets in the configuration hinder the correct operation, since they may alter the programmed routing paths and logic functions. In most trigger and data acquisition systems, data from several front-end modules are concentrated into a single board, which then transmits data to back-end electronics for acquisition and triggering. Since the front-end modules are identical, they host identical FPGAs, which are programmed with the same bitstream. In this work, we present a novel scrubber capable of correcting radiation-induced soft-errors in the configuration of SRAM-based FPGAs by majority voting across different modules. We show an application of this system to the read-out electronics of the Aerogel Ring Imaging CHerenkov (ARICH) subdetector of the Belle2 experiment at SuperKEKB of the KEK laboratory (Tsukuba, Japan). We discuss the architecture of the system and its implementation in a Virtex-5 LX50T FPGA, in the concentrator board, for correcting the configuration of up to six Spartan-6 LX45 FPGAs, on pertaining front-end modules. We discuss results from fault-injection and neutron irradiation tests at the TRIGA reactor of the Jozef Stefan Institute (Ljubljana, Slovenia) and we compare the performance of our solution to the Xilinx Soft Error Mitigation controller.
The Belle II experiment at the Super B factory SuperKEKB, an asymmetric $e^+e^-$ collider located in Tsukuba, Japan, is tailored to perform precision B physics measurements. The centre of mass energy of the collisions is equal to the rest mass of the $Upsilon(4S)$ resonance of $m_{Upsilon(4S)} = 10.58,rm GeV$. A high vertex resolution is essential for measuring the decay vertices of B mesons. Typical momenta of the decay products are ranging from a few tens of MeV to a few GeV and multiple scattering has a significant impact on the vertex resolution. The VerteX Detector (VXD) for Belle II is therefore designed to have as little material as possible inside the acceptance region. Especially the innermost two layers, populated by the PiXel Detector (PXD), have to be ultra-thin. The PXD is based on DEpleted P-channel Field Effect Transistors (DEPFETs) with a thickness of only $75,rmmu m$. Spatial resolution and hit efficiency of production detector modules were studied in beam tests performed at the DESY test beam facility. The spatial resolution was investigated as a function of the incidence angle and improvements due to charge sharing are demonstrated. The measured module performance is compatible with the requirements for Belle II.
This paper describes the track-finding algorithm that is used for event reconstruction in the Belle II experiment operating at the SuperKEKB B-factory in Tsukuba, Japan. The algorithm is designed to balance the requirements of a high efficiency to fi nd charged particles with a good track parameter resolution, a low rate of spurious tracks, and a reasonable demand on CPU resources. The software is implemented in a flexible, modular manner and employs a diverse selection of global and local track-finding algorithms to achieve an optimal performance.
432 - Thomas Ge{ss}ler 2014
We present an FPGA-based online data reduction system for the pixel detector of the future Belle II experiment. The occupancy of the pixel detector is estimated at 3 %. This corresponds to a data output rate of more than 20 GB/s after zero suppressio n, dominated by background. The Online Selection Nodes (ONSEN) system aims to reduce the background data by a factor of 30. It consists of 33 MicroTCA cards, each equipped with a Xilinx Virtex-5 FPGA and 4 GiB DDR2 RAM. These cards are hosted by 9 AdvancedTCA carrier boards. The ONSEN system buffers the entire output data from the pixel detector for up to 5 seconds. During this time, the Belle II high-level trigger PC farm performs an online event reconstruction, using data from the other Belle II subdetectors. It extrapolates reconstructed tracks to the layers of the pixel detector and defines regions of interest around the intercepts. Based on this information, the ONSEN system discards all pixels not inside a region of interest before sending the remaining hits to the event builder system. During a beam test with one layer of the pixel detector and four layers of the surrounding silicon strip detector, including a scaled-down version of the high-level trigger and data acquisition system, the pixel data reduction using regions of interest was exercised. We investigated the data produced in more than 20 million events and verified that the ONSEN system behaved correctly, forwarding all pixels inside regions of interest and discarding the rest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا