ﻻ يوجد ملخص باللغة العربية
Replica exchange Monte Carlo (reMC), also known as parallel tempering, is an important technique for accelerating the convergence of the conventional Markov Chain Monte Carlo (MCMC) algorithms. However, such a method requires the evaluation of the energy function based on the full dataset and is not scalable to big data. The naive implementation of reMC in mini-batch settings introduces large biases, which cannot be directly extended to the stochastic gradient MCMC (SGMCMC), the standard sampling method for simulating from deep neural networks (DNNs). In this paper, we propose an adaptive replica exchange SGMCMC (reSGMCMC) to automatically correct the bias and study the corresponding properties. The analysis implies an acceleration-accuracy trade-off in the numerical discretization of a Markov jump process in a stochastic environment. Empirically, we test the algorithm through extensive experiments on various setups and obtain the state-of-the-art results on CIFAR10, CIFAR100, and SVHN in both supervised learning and semi-supervised learning tasks.
Artificial neural networks (ANNs) are typically highly nonlinear systems which are finely tuned via the optimization of their associated, non-convex loss functions. Typically, the gradient of any such loss function fails to be dissipative making the
We consider parallel asynchronous Markov Chain Monte Carlo (MCMC) sampling for problems where we can leverage (stochastic) gradients to define continuous dynamics which explore the target distribution. We outline a solution strategy for this setting
Stochastic gradient MCMC (SG-MCMC) algorithms have proven useful in scaling Bayesian inference to large datasets under an assumption of i.i.d data. We instead develop an SG-MCMC algorithm to learn the parameters of hidden Markov models (HMMs) for tim
It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly with dataset size. A popular class of methods for solving this issue is stochastic gradient MCMC. These methods use a noisy estimate of the gradient of the log posterior, whic
This paper proposes a new family of algorithms for training neural networks (NNs). These are based on recent developments in the field of non-convex optimization, going under the general name of successive convex approximation (SCA) techniques. The b