ﻻ يوجد ملخص باللغة العربية
Compared to single-component Bose-Einstein condensates, spinor Bose-Einstein condensates display much richer dynamics. In addition to density oscillations, spinor Bose-Einstein condensates exhibit intriguing spin dynamics that is associated with population transfer between different hyperfine components. This work analyzes the validity of the widely employed single-mode approximation when describing the spin dynamics in response to a quench of the system Hamiltonian. The single-mode approximation assumes that the different hyperfine states all share the same time-independent spatial mode. This implies that the resulting spin Hamiltonian only depends on the spin interaction strength and not on the density interaction strength. Taking the spinor sodium Bose-Einstein condensate in the $f=1$ hyperfine manifold as an example and working within the mean-field theory framework, it is found numerically that the single-mode approximation misses, in some parameter regimes, intricate details of the spin and spatial dynamics. We develop a physical picture that explains the observed phenomenon. Moreover, using that the population oscillations described by the single-mode approximation enter into the effective potential felt by the mean-field spinor, we derive a semi-quantitative condition for when dynamical mean-field induced corrections to the single-mode approximation are relevant. Our mean-field results have implications for a variety of published and planned experimental studies.
It is shown for the Bose-Einstein condensate of cold atomic system that the new unperturbed Hamiltonian, which includes not only the first and second powers of the zero mode operators but also the higher ones, determines a unique and stationary vacuu
We numerically model experiments on the superfluid critical velocity of an elongated, harmonically trapped Bose-Einstein condensate as reported by [P. Engels and C. Atherton, Phys. Rev. Lett. 99, 160405 (2007)]. These experiments swept an obstacle fo
Improved control of the motional and internal quantum states of ultracold neutral atoms and ions has opened intriguing possibilities for quantum simulation and quantum computation. Many-body effects have been explored with hundreds of thousands of qu
We propose a generalized Mathieu equation (GME) which describes well the dynamics for two different models in spin-1 Bose-Einstein condensates. The stability chart of this GME differs significantly from that of Mathieus equation and the unstable dyna
We investigate the collective excitations of a Raman-induced spin-orbit coupled Bose-Einstein condensate confined in a quasi one-dimension harmonic trap using the Bogoliubov method. By tuning the Raman coupling strength, three phases of the system ca