ﻻ يوجد ملخص باللغة العربية
It is shown for the Bose-Einstein condensate of cold atomic system that the new unperturbed Hamiltonian, which includes not only the first and second powers of the zero mode operators but also the higher ones, determines a unique and stationary vacuum at zero temperature. From the standpoint of quantum field theory, it is done in a consistent manner that the canonical commutation relation of the field operator is kept. In this formulation, the condensate phase does not diffuse and is robust against the quantum fluctuation of the zero mode. The standard deviation for the phase operator depends on the condensed atom number with the exponent of $-1/3$, which is universal for both homogeneous and inhomogeneous systems.
Compared to single-component Bose-Einstein condensates, spinor Bose-Einstein condensates display much richer dynamics. In addition to density oscillations, spinor Bose-Einstein condensates exhibit intriguing spin dynamics that is associated with popu
We consider a BEC of rigid rotor molecules confined to quasi-2d through harmonic trapping. The molecules are subjected to an external electric field which polarizes the gas, and the molecules interact via dipole-dipole interactions. We present a desc
We study topologically non-trivial excitations of a weakly interacting, spin-orbit coupled Bose-Einstein condensate in a two-dimensional square optical lattice, a system recently realized in experiment [W. Sun et al., Phys. Rev. Lett. 121, 150401 (20
The ground state of a Bose-Einstein condensate in a two-dimensional trap potential is analyzed numerically at the infinite-particle limit. It is shown that the anisotropy of the many-particle position variance along the $x$ and $y$ axes can be opposi
Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscilla