ﻻ يوجد ملخص باللغة العربية
In slow collisions of two bare nuclei with the total charge number larger than the critical value, $Z_{rm cr} approx 173$, the initially neutral vacuum can spontaneously decay into the charged vacuum and two positrons. Detection of the spontaneous emission of positrons would be the direct evidence of this fundamental phenomenon. However, the spontaneous emission is generally masked by the dynamical positron emission, which is induced by a strong time-dependent electric field created by the colliding nuclei. In our recent paper [I.A. Maltsev et al., Phys. Rev. Lett. 123, 113401 (2019)] it has been shown that the spontaneous pair production can be observed via measurements of the pair-production probabilities for a given set of nuclear trajectories. In the present paper, we have significantly advanced this study by exploring additional aspects of the process we are interested in. We calculate the positron energy spectra and find that these spectra can give a clear signature of the transition from the subcritical to the supercritical regime. It is found that focusing on a part of the positron spectrum, which accounts for the energy region where the spontaneously created positrons can contribute, allows to get a much stronger evidence of the transition to the supercritical mode, making it very well pronounced in collisions, for example, of two uranium nuclei. The possibility of extending this study to collisions of bare nuclei with neutral atoms is also considered. The probability of a vacancy in the lowest-energy state of a quasimolecule which is formed in collisions of a bare U nucleus with neutral U and Cm atoms has been calculated. The relatively large values of this probability make such collisions suitable for observing the vacuum decay.
The current status of tests of quantum electrodynamics with heavy ions is reviewed. The theoretical predictions for the Lamb shift and the hyperfine splitting in heavy ions are compared with available experimental data. Recent achievements and future
The differential and partially integrated cross sections are considered for bremsstrahlung from high-energy electrons in atomic field with the exact account of this field. The consideration exploits the quasiclassical electron Greens function and wav
We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurem
An exact representation of the causal QED fermion Greens function, in an arbritrary external electromagnetic field, derived by Fried, Gabellini and McKellar, and which naturally allows for non-perturbative approximations, is here used to calculate no
We derive the low-energy expansion of $(Zalpha) ^{2}$ and $(Zalpha) ^{4}$ terms of the polarization operator in the Coulomb field. Physical applications such as the low-energy Delbr{u}ck scattering and magnetic loop contribution to the $g$ factor of the bound electron are considered.