ﻻ يوجد ملخص باللغة العربية
The current status of tests of quantum electrodynamics with heavy ions is reviewed. The theoretical predictions for the Lamb shift and the hyperfine splitting in heavy ions are compared with available experimental data. Recent achievements and future prospects in studies of the $g$ factor with highly charged ions are also reported. These studies can provide precise determination of the fundamental constants and tests of QED within and beyond the Furry picture at the strong-coupling regime. Theoretical calculations of the electron-positron pair creation probabilities in low-energy heavy-ion collisions are also considered. Special attention is paid to tests of QED in supercritical-field regime, which can be accessed in slow collisions of two bare nuclei with the total charge number larger than the critical value, $Z_{rm crit} approx 173$. In the supercritical field, the initially neutral vacuum can spontaneously decay into the charged vacuum and two positrons. It is demonstrated that this fundamental phenomenon can be observed via impact-sensitive measurements of the pair-production probabilities.
The current status of bound state quantum electrodynamics calculations of transition energies for few-electron ions is reviewed. Evaluation of one and two body QED correction is presented, as well as methods to evaluate many-body effects that cannot
Aiming at the investigation of above-threshold ionization in super-strong laser fields with highly charged ions, we develop a Coulomb-corrected strong field approximation (SFA). The influence of the Coulomb potential of the atomic core on the ionized
QED corrections to the $g$ factor of Li-like and B-like ions in a wide range of nuclear charges are presented. Many-electron contributions as well as radiative effects on the one-loop level are calculated. Contributions resulting from the interelectr
Calculations of various corrections to the g factor of Li-like ions are presented, which result in a significant improvement of the theoretical accuracy in the region Z = 6-92. The configuration-interaction Dirac-Fock method is employed for the evalu
We develop a relativistic Coulomb-corrected strong field approximation (SFA) for the investigation of spin effects at above-threshold ionization in relativistically strong laser fields with highly charged hydrogen-like ions. The Coulomb-corrected SFA