ﻻ يوجد ملخص باللغة العربية
Developed as NASA Astrophysics Probe-class mission, the Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to identify the sources of ultra-high energy cosmic rays (UHECRs) and to observe cosmic neutrinos. POEMMA consists of two spacecraft flying in a loose formation at 525 km altitude, 28.5$^circ$ inclination orbits. Each spacecraft hosts a Schmidt telescope with a large collecting area and wide Field-of-View (FoV). A novel focal plane is employed that is optimized to observe both the UV fluorescence signal from extensive air showers (EASs) and the optical Cherenkov signals from EASs. In UHECR stereo fluorescence mode, POEMMA will measure the spectrum, composition, and full-sky distribution of the UHECRs above 20 EeV with high statistics along with remarkable sensitivity to UHE neutrinos. The POEMMA spacecraft are designed to quickly re-orient to a Target-of-Opportunity (ToO) neutrino mode to observe transient astrophysical sources with unique sensitivity. In this mode, POEMMA will be able to detect cosmic tau neutrino events above 20 PeV by measuring the upward-moving EASs for $tau$-lepton decays induced from tau neutrino interactions in the Earth. In this paper, POEMMAs science goals and instrument design are summarized with a focus on the SiPM implementation in POEMMA, along with a detailed discussion of the properties of the Cherenkov EAS signal in the context of wide wavelength sensitivity offered by SiPMs. A comparison of the fluorescence response between SiPMs and the MAPMTs currently planned for use in POEMMA will also be discussed, assessing the potential for SiPMs to perform EAS fluorescence measurements.
Future detection of Extensive Air Showers (EAS) produced by Ultra High Energy Cosmic Particles (UHECP) by means of space based fluorescence telescopes will open a new window on the universe and allow cosmic ray and neutrino astronomy at a level that
Space-based ultra-high-energy cosmic ray detectors observe fluorescence light from extensive air showers produced by these particles in the troposphere. Clouds can scatter and absorb this light and produce systematic errors in energy determination an
The Wide Field-of-View Cherenkov Telescope Array (WFCTA) and the Water Cherenkov Detector Arrays (WCDA) of LHAASO are designed to work in combination for measuring the energy spectra of various cosmic ray species over a very wide energy range from a
Since 2007, the Telescope Array (TA) experiment, based in Utah, USA, has been observing ultra high energy cosmic rays to understand their origins. The experiment involves a surface detector (SD) array and three fluorescence detector (FD) stations. FD
Extensive air shower (EAS) arrays directly sample the shower particles that reach the observation altitude. They are wide field of view (FoV) detectors able to view the whole sky simultaneously and continuously. In fact, EAS arrays have an effective