ترغب بنشر مسار تعليمي؟ اضغط هنا

Low Level Carbon Monoxide Line Polarization in two Protoplanetary Disks: HD 142527 and IM Lup

70   0   0.0 ( 0 )
 نشر من قبل Ian Stephens
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic fields are expected to play an important role in accretion processes for circumstellar disks. Measuring the magnetic field morphology is difficult, especially since polarimetric (sub)millimeter continuum observations may not trace fields in most disks. The Goldreich-Kylafis (GK) effect suggests that line polarization is perpendicular or parallel to the magnetic field direction. We attempt to observe CO(2-1), $^{13}$CO(2-1), and C$^{18}$O(2-1) line polarization toward HD 142527 and IM Lup, which are large, bright protoplanetary disks. We use spatial averaging and spectral integration to search for signals in both disks, and detect a potential CO(2-1) Stokes $Q$ signal toward both disks. The total CO(2-1) polarization fractions are 1.57 $pm$ 0.18% and 1.01 $pm$ 0.10% for HD 142527 and IM Lup, respectively. Our Monte Carlo simulations indicate that these signals are marginal. We also stack Stokes parameters based on the Keplerian rotation, but no signal was found. Across the disk traced by dust of HD 142527, the 3$sigma$ upper limits for $P_{text{frac}}$ at 0.5$^{primeprime}$ ($sim$80 au) resolution are typically less than 3% for CO(2-1) and $^{13}$CO(2-1) and 4% for C$^{18}$O(2-1). For IM Lup, the 3$sigma$ upper limits for these three lines are typically less than 3%, 4%, and 12%, respectively. Upper limits based on our stacking technique are up to a factor of $sim$10 lower, though stacking areas can potentially average out small-scale polarization structure. We also compare our continuum polarization at 1.3 mm to observations at 870 $mu$m from previous studies. The polarization in the northern dust trap of HD 142527 shows a significant change in morphology and an increase in $P_{text{frac}}$ as compared to 870 $mu$m. For IM Lup, the 1.3 mm polarization may be more azimuthal and has a higher $P_{text{frac}}$ than at 870 $mu$m.

قيم البحث

اقرأ أيضاً

We present 870 $mu$m ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fract ion increases steadily toward the center of the disk, reaching a peak value of ~1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72 $mu$m) and IM Lup (61 $mu$m, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter (or even centimeter) sized grains.
Magnetic fields are fundamental to the accretion dynamics of protoplanetary disks and they likely affect planet formation. Typical methods to study the magnetic field morphology observe the polarization of dust or spectral lines. However, it has rece ntly become clear that dust-polarization in ALMAs spectral regime not always faithfully traces the magnetic field structure of protoplanetary disks, which leaves spectral line polarization as a promising method of mapping the magnetic field morphologies of such sources. We aim to model the emergent polarization of different molecular lines in the ALMA wavelength regime that are excited in protoplanetary disks. We explore a variety of disk models and molecules to identify those properties that are conducive to the emergence of polarization in spectral lines and may therefore be viably used for magnetic field measurements in protoplanetary disks. Methods. We use PORTAL (POlarized Radiative Transfer Adapted to Lines) in conjunction with LIME (Line Emission Modeling Engine). Together, they allow us to treat the polarized line radiative transfer of complex three-dimensional physical and magnetic field structures. We present simulations of the emergence of spectral line polarization of different molecules and molecular transitions in the ALMA wavelength regime and we comment on the observational feasibility of ALMA linear polarization observations of protoplanetary disks. We find that molecules that thermalize at high densities, such as HCN, are also most susceptible to polarization. We find that such molecules are expected to be significantly polarized in protoplanetary disks, while molecules that thermalize at low densities, such as CO, are only significantly polarized in the outer disk regions.
Protoplanetary disk evolution is strongly impacted by ionization from the central star and local environment, which collectively have been shown to drive chemical complexity and are expected to impact the transport of disk material. Nonetheless, ioni zation remains a poorly constrained input to many detailed modeling efforts. We use new and archival ALMA observations of N$_2$H$^+$ 3--2 and H$^{13}$CO$^+$ 3--2 to derive the first observationally-motivated ionization model for the IM Lup protoplanetary disk. Incorporating ionization from multiple internal and external sources, we model N$_2$H$^+$ and H$^{13}$CO$^+$ abundances under varying ionization environments, and compare these directly to the imaged ALMA observations by performing non-LTE radiative transfer, visibility sampling, and imaging. We find that the observations are best reproduced using a radially increasing cosmic ray (CR) gradient, with low CR ionization in the inner disk, high CR ionization in the outer disk, and a transition at $sim 80 - 100$ au. This location is approximately coincident with the edge of spiral structure identified in millimeter emission. We also find that IM Lup shows evidence for enhanced UV-driven formation of HCO$^+$, which we attribute to the disks high flaring angle. In summary, IM Lup represents the first protoplanetary disk with observational evidence for a CR gradient, which may have important implications for IM Lups on-going evolution, especially given the disks young age and large size.
The circumstellar disk of the Herbig Fe star HD 142527 is host to several remarkable features including a warped inner disk, a 120 au-wide annular gap, a prominent dust trap and several spiral arms. A low-mass companion, HD 142527 B, was also found o rbiting the primary star at $sim$14 au. This study aims to better characterize this companion, which could help explain its impact on the peculiar geometry of the disk. We observed the source with VLT/SINFONI in $H$+$K$ band in pupil-tracking mode. Data were post-processed with several algorithms based on angular differential imaging (ADI). HD 142527 B is conspicuously re-detected in most spectral channels, which enables us to extract the first medium-resolution spectrum of a low-mass companion within 0.1 from its central star. Fitting our spectrum with both template and synthetic spectra suggests that the companion is a young M2.5$pm$1.0 star with an effective temperature of $3500pm100$ K, possibly surrounded with a hot (1700 K) circum-secondary environment. Pre-main sequence evolutionary tracks provide a mass estimate of $0.34pm0.06 M_{odot}$, independent of the presence of a hot environment. However, the estimated stellar radius and age do depend on that assumption; we find a radius of $1.37 pm 0.05 R_{odot}$ (resp. $1.96 pm 0.10 R_{odot}$) and an age of $1.8^{+1.2}_{-0.5}$ Myr (resp. $0.75 pm 0.25$ Myr) in the case of the presence (resp. absence) of a hot environment contributing in $H$+$K$. Our new values for the mass and radius yield a mass accretion rate of $sim$5 $times 10^{-9} M_{odot}$ yr$^{-1}$ (2-3% that of the primary). Our results illustrate thus the potential for SINFONI+ADI to characterize faint close-in companions. The new spectral type makes HD 142527 B a twin of the well known TW Hya T-Tauri star, and the revision of its mass to higher values further supports its role in shaping the disk.
The dominant reservoirs of elemental nitrogen in protoplanetary disks have not yet been observationally identified. Likely candidates are HCN, NH$_3$ and N$_2$. The relative abundances of these carriers determine the composition of planetesimals as a function of disk radius due to strong differences in their volatility. A significant sequestration of nitrogen in carriers less volatile than N$_2$ is likely required to deliver even small amounts of nitrogen to the Earth and potentially habitable exo-planets. While HCN has been detected in small amounts in inner disks ($<10$ au), so far only relatively insensitive upper limits on inner disk NH$_3$ have been obtained. We present new Gemini-TEXES high resolution spectroscopy of the 10.75 $mu$m band of warm NH$_3$, and use 2-dimensional radiative transfer modeling to improve previous upper limits by an order of magnitude to $rm [NH_3/H_{nuc}]<10^{-7}$ at 1 au. These NH$_3$ abundances are significantly lower than those typical for ices in circumstellar envelopes ($[{rm NH_3/H_{nuc}}]sim 3times 10^{-6}$). We also consistently retrieve the inner disk HCN gas abundances using archival Spitzer spectra, and derive upper limits on the HCN ice abundance in protostellar envelopes using archival ground-based 4.7 $mu$m spectroscopy ([HCN$_{rm ice}$]/[H$_2$O$_{rm ice}$]$<1.5-9$%). We identify the NH$_3$/HCN ratio as an indicator of chemical evolution in the disk, and use this ratio to suggest that inner disk nitrogen is efficiently converted from NH$_3$ to N$_2$, significantly increasing the volatility of nitrogen in planet-forming regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا