ﻻ يوجد ملخص باللغة العربية
When a star passes close to a supermassive black hole (BH), the BHs tidal forces rip it apart into a thin stream, leading to a tidal disruption event (TDE). In this work, we study the post-disruption phase of TDEs in general relativistic hydrodynamics (GRHD) using our GPU-accelerated code H-AMR. We carry out the first grid-based simulation of a deep-penetration TDE ($beta$=7) with realistic system parameters: a black-hole-to-star mass ratio of $10^6$, a parabolic stellar trajectory, and a nonzero BH spin. We also carry out a simulation of a tilted TDE whose stellar orbit is inclined relative to the BH midplane. We show that for our aligned TDE, an accretion disk forms due to the dissipation of orbital energy with $sim$20 percent of the infalling material reaching the BH. The dissipation is initially dominated by violent self-intersections and later by stream-disk interactions near the pericenter. The self-intersections completely disrupt the incoming stream, resulting in five distinct self-intersection events separated by approximately 12 hours and a flaring in the accretion rate. We also find that the disk is eccentric with mean eccentricity e$approx$0.88. For our tilted TDE, we find only partial self-intersections due to nodal precession near pericenter. Although these partial intersections eject gas out of the orbital plane, an accretion disk still forms with a similar accreted fraction of the material to the aligned case. These results have important implications for disk formation in realistic tidal disruptions. For instance, the periodicity in accretion rate induced by the complete stream disruption may explain the flaring events from Swift J1644+57.
Stream-stream collisions play an important role for the circularization of highly eccentric streams resulting from tidal disruption events (TDEs). We perform three dimensional radiation hydrodynamic simulations to show that stream collisions can cont
We perform the first self-consistent measurement of the rate of interactions between stellar tidal streams created by disrupting satellites and dark subhalos in a cosmological simulation of a Milky-Way-mass galaxy. Using a retagged version of the Aqu
Mergers and tidal interactions between massive galaxies and their dwarf satellites are a fundamental prediction of the Lambda-Cold Dark Matter cosmology. These events are thought to influence galaxy evolution throughout cosmic history and to provide
We present and analyze the optical/UV and X-ray observations of a nearby tidal disruption event (TDE) candidate AT2019azh, spanning from 30 d before to ~ 250 d after its early optical peak. The X-rays show a late brightening by a factor of ~ 30-100 a
We propose that star formation is delayed relative to the inflow rate in rapidly-accreting galaxies at very high redshift (z > 2) because of the energy conveyed by the accreting gas. Accreting gas streams provide fuel for star formation, but they sti