ترغب بنشر مسار تعليمي؟ اضغط هنا

Prompt Radiation and Mass Outflows from the Stream-Stream Collisions of Tidal Disruption Events

149   0   0.0 ( 0 )
 نشر من قبل Yan-Fei Jiang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stream-stream collisions play an important role for the circularization of highly eccentric streams resulting from tidal disruption events (TDEs). We perform three dimensional radiation hydrodynamic simulations to show that stream collisions can contribute significant optical and ultraviolet light to the flares produced by TDEs, and can sometimes explain the majority of the observed emission. Our simulations focus on the region near the radiation pressure dominated shock produced by a collision and track how the kinetic energy of the stream is dissipated by the associated shock. When the mass flow rate of the stream $dot{M}$ is a significant fraction of the Eddington accretion rate, $gtrsim2%$ of the initial kinetic energy is converted to radiation directly as a result of the collision. In this regime, the collision redistributes the specific kinetic energy into the downstream gas and more than $16%$ of the mass can become unbound. The fraction of unbound gas decreases rapidly as $dot{M}$ drops significantly below the Eddington limit, with no unbound gas being produced when $dot{M}$ drops to $1%$ of Eddington; we find however that the radiative efficiency increases slightly to $lesssim 8%$ in these low $dot{M}$ cases. The effective radiation temperature and size of the photosphere is determined by the stream velocity and $dot{M}$, which we find to be a few times $10^4$~K and $10^{14}$~cm in our calculations, comparable to the inferred values of some TDE candidates. The photosphere size is directly proportional to $dot{M}$, which can explain the rapidly changing photosphere sizes seen in TDE candidates such as PS1-10jh.

قيم البحث

اقرأ أيضاً

When a star passes close to a supermassive black hole (BH), the BHs tidal forces rip it apart into a thin stream, leading to a tidal disruption event (TDE). In this work, we study the post-disruption phase of TDEs in general relativistic hydrodynamic s (GRHD) using our GPU-accelerated code H-AMR. We carry out the first grid-based simulation of a deep-penetration TDE ($beta$=7) with realistic system parameters: a black-hole-to-star mass ratio of $10^6$, a parabolic stellar trajectory, and a nonzero BH spin. We also carry out a simulation of a tilted TDE whose stellar orbit is inclined relative to the BH midplane. We show that for our aligned TDE, an accretion disk forms due to the dissipation of orbital energy with $sim$20 percent of the infalling material reaching the BH. The dissipation is initially dominated by violent self-intersections and later by stream-disk interactions near the pericenter. The self-intersections completely disrupt the incoming stream, resulting in five distinct self-intersection events separated by approximately 12 hours and a flaring in the accretion rate. We also find that the disk is eccentric with mean eccentricity e$approx$0.88. For our tilted TDE, we find only partial self-intersections due to nodal precession near pericenter. Although these partial intersections eject gas out of the orbital plane, an accretion disk still forms with a similar accreted fraction of the material to the aligned case. These results have important implications for disk formation in realistic tidal disruptions. For instance, the periodicity in accretion rate induced by the complete stream disruption may explain the flaring events from Swift J1644+57.
A star approaching a supermassive black hole (SMBH) can be torn apart in a tidal disruption event (TDE). We examine ultra-deep TDEs, a new regime in which the disrupted debris approaches close to the black holes Schwarzschild radius, and the leading part intersects the trailing part at the first pericenter passage. We calculate the range of penetration factors $beta$ vs SMBH masses $M$ that produce these prompt self-intersections using a Newtonian analytic estimate and a general relativistic (GR) geodesic model. We find that significant self-intersection of Solar-type stars requires $beta sim 50 - 127$ for $M/M_odot = 10^4$, down to $beta sim 5.6 - 5.9$ for $M/M_odot = 10^6$. We run smoothed-particle hydrodynamic (SPH) simulations to corroborate our calculations and find close agreement, with a slightly shallower dependence on $M$. We predict that the shock from the collision emits an X-ray flare lasting $t sim 2$ s with $L sim 10^{47}$ ergs/s at $E sim 2$ keV, and the debris has a prompt accretion episode lasting $t sim$ several min. The events are rare and occur with a rate $dot{N} lesssim 10^{-7}$ Mpc$^{-3}$ yr$^{-1}$. Ultra-deep TDEs can probe the strong gravity and demographics of low-mass SMBHs.
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs. Then, we show that these events provide valuable information on many aspects of jet physics from a new prospective, including the on-and-off switch of jet launching, jet propagation through the ambient medium, $gamma/$X-ray radiation mechanism, jet composition, and the multi-messenger picture. Finally, open questions and future prospects in this field are summarized.
102 - Kimitake Hayasaki 2021
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
95 - Suvi Gezari 2021
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probin g otherwise dormant MBHs, first emerged in archival searches of the soft X-ray ROSAT All-Sky Survey in the 1990s; but has recently accelerated with the increasing survey power in the optical time domain, with tidal disruption events (TDEs) now regarded as a class of optical nuclear transients with distinct spectroscopic features. Multiwavelength observations of TDEs have revealed panchromatic emission, probing a wide range of scales, from the innermost regions of the accretion flow, to the surrounding circumnuclear medium. I review the current census of 56 TDEs reported in the literature, and their observed properties can be summarized as follows: $bullet$ The optical light curves follow a power-law decline from peak that scales with the inferred central black hole mass as expected for the fallback rate of the stellar debris, but the rise time does not. $bullet$ The UV/optical and soft X-ray thermal emission come from different spatial scales, and their intensity ratio has a large dynamic range, and is highly variable, providing important clues as to what is powering the two components. $bullet$ They can be grouped into three spectral classes, and those with Bowen fluorescence line emission show a preference for a hotter and more compact line-emitting region, while those with only He II emission lines are the rarest class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا