ﻻ يوجد ملخص باللغة العربية
In this work, we study the problem of actively classifying the attributes of dynamical systems characterized as a finite set of Markov decision process (MDP) models. We are interested in finding strategies that actively interact with the dynamical system and observe its reactions so that the attribute of interest is classified efficiently with high confidence. We present a decision-theoretic framework based on partially observable Markov decision processes (POMDPs). The proposed framework relies on assigning a classification belief (a probability distribution) to the attributes of interest. Given an initial belief, confidence level over which a classification decision can be made, a cost bound, safe belief sets, and a finite time horizon, we compute POMDP strategies leading to classification decisions. We present two different algorithms to compute such strategies. The first algorithm computes the optimal strategy exactly by value iteration. To overcome the computational complexity of computing the exact solutions, we propose a second algorithm is based on adaptive sampling to approximate the optimal probability of reaching a classification decision. We illustrate the proposed methodology using examples from medical diagnosis and privacy-preserving advertising.
We study the problem of synthesizing a controller that maximizes the entropy of a partially observable Markov decision process (POMDP) subject to a constraint on the expected total reward. Such a controller minimizes the predictability of an agents t
In this paper, we consider the problem of controlling a partially observed Markov decision process (POMDP) in order to actively estimate its state trajectory over a fixed horizon with minimal uncertainty. We pose a novel active smoothing problem in w
The focus of this paper is on solving multi-robot planning problems in continuous spaces with partial observability. Decentralized partially observable Markov decision processes (Dec-POMDPs) are general models for multi-robot coordination problems, b
We study planning problems where autonomous agents operate inside environments that are subject to uncertainties and not fully observable. Partially observable Markov decision processes (POMDPs) are a natural formal model to capture such problems. Be
This paper addresses an important class of restless multi-armed bandit (RMAB) problems that finds a broad application area in operations research, stochastic optimization, and reinforcement learning. There are $N$ independent Markov processes that ma