ﻻ يوجد ملخص باللغة العربية
Combined experimental and modeling studies of the magnetocaloric effect, ultrasound, and magnetostriction were performed on single-crystal samples of the spin-dimer system Sr$_3$Cr$_2$O$_8$ in large magnetic fields, to probe the spin-correlated regime in the proximity of the field-induced XY-type antiferromagnetic order also referred to as a Bose-Einstein condensate of magnons. The magnetocaloric effect, measured under adiabatic conditions, reveals details of the field-temperature ($H,T$) phase diagram, a dome characterized by critical magnetic fields $H_{c1}$ = 30.4 T, $H_{c2}$ = 62 T, and a single maximum ordering temperature $T_{{rm max}}(45~$T$)simeq$8 K. The sample temperature was observed to drop significantly as the magnetic field is increased, even for initial temperatures above $T_{{rm max}}$, indicating a significant magnetic entropy associated to the field-induced closure of the spin gap. The ultrasound and magnetostriction experiments probe the coupling between the lattice degrees of freedom and the magnetism in Sr$_3$Cr$_2$O$_8$. Our experimental results are qualitatively reproduced by a minimalistic phenomenological model of the exchange-striction by which sound waves renormalize the effective exchange couplings.
We find a novel topological defect in a spin-nematic superfluid theoretically. A quantized vortex spontaneously breaks its axisymmetry, leading to an elliptic vortex in nematic-spin Bose-Einstein condensates with small positive quadratic Zeeman effec
For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper we propose a fundamentally
The weakly coupled quasi-one-dimensional spin ladder compound (CH$_3$)$_2$CHNH$_3$CuCl$_3$ is studied by neutron scattering in magnetic fields exceeding the critical field of Bose-Einstein condensation of magnons. Commensurate long-range order and th
Characterizing many-body systems through the quantum correlations between their constituent particles is a major goal of quantum physics. Although entanglement is routinely observed in many systems, we report here the detection of stronger correlatio
Using parametric conversion induced by a Shapiro-type resonance, we produce and characterize a two-mode squeezed vacuum state in a sodium spin 1 Bose-Einstein condensate. Spin-changing collisions generate correlated pairs of atoms in the $m=pm 1$ Zee