ﻻ يوجد ملخص باللغة العربية
A general prediction from asymptotically safe quantum gravity is the approximate vanishing of all quartic scalar couplings at the UV fixed point beyond the Planck scale. A vanishing Higgs doublet quartic coupling near the Planck scale translates into a prediction for the ratio between the mass of the Higgs boson $M_H$ and the top quark $M_t$. If only the standard model particles contribute to the running of couplings below the Planck mass, the observed $M_Hsim125,{rm GeV}$ results in the prediction for the top quark mass $M_tsim 171,{rm GeV}$, in agreement with recent measurements. In this work, we study how the asymptotic safety prediction for the top quark mass is affected by possible physics at an intermediate scale. We investigate the effect of a $SU(2)$ triplet scalar and right-handed neutrinos, needed to explain the tiny mass of left-handed neutrinos. For pure seesaw II, with no or very heavy right handed neutrinos, the top mass can increase to $M_tsim 172.5,{rm GeV}$ for a triplet mass of $M_Deltasim 10^8{rm GeV}$. Right handed neutrino masses at an intermediate scale increase the uncertainty of the predictions of $M_t$ due to unknown Yukawa couplings of the right-handed neutrinos and a cubic interaction in the scalar potential. For an appropriate range of Yukawa couplings there is no longer an issue of vacuum stability.
The ATLAS and CMS experiments observed a particle at the LHC with a mass $approx 126$ GeV, which is compatible with the Higgs boson of the Standard Model. A crucial question is, if for such a Higgs mass value, one could extrapolate the model up to hi
The discovery of the Higgs boson by the LHC and the measurement of its mass at around 125 GeV, taken together with the absence of signals of physics beyond the standard model, make it possible that we might live in a metastable electroweak vacuum. In
The axion quark nuggets introduced in cite{zhitnitsky}-cite{zhitnitsky13} are a candidate for cold dark matter which, in addition, may be relevant in baryogenesis scenarios. The present work studies their evolution till they enter in the colour super
We discuss a connection between gravitational-wave physics, quantum theory anomalies, right-handed (sterile) neutrinos, (spontaneous) CPT Violation and Leptogenesis, within the framework of string-inspired cosmological models. In particular, we prese
We investigate the invariant-mass distribution of top-quark pairs near the $2m_t$ threshold, which has strong impact on the determination of the top-quark mass $m_t$. We show that higher-order non-relativistic corrections lead to large contributions