ﻻ يوجد ملخص باللغة العربية
The purpose of this study was to quantitatively evaluate the visibility and artifacts of commercially available fiducial markers in order to optimize their selection for image-guided stereotactic body radiation therapy (SBRT). From six different vendors, we selected 11 fiducials commonly used in image-guided radiation therapy (IGRT); the fiducials varied in material composition (gold, platinum, carbon), shape (cylindrical, notched/linear, coiled, ball-like, step), and size measured in terms of diameter (0.28-1.0 mm) and length (3.0-20.0 mm). Each fiducial was centered in 4-mm bolus within a 13-cm-thick water-equivalent phantom. Fiducials were imaged with use of a simulation computed tomography (CT) scanner, a CT-on-rails system, and an onboard cone-beam CT system. Acquisition parameters were set according to clinical protocols. Visibility was assessed in terms of contrast and the Michelson visibility metric. Artifacts were quantified in terms of relative standard deviation and relative streak artifacts level (rSAL). Twelve radiation oncologists ranked each fiducial in terms of clinical usefulness. Contrast and artifacts increased with fiducial size. For CT imaging, maximum contrast (2722 HU) and artifacts (rSAL=2.69) occurred for the largest-diameter (0.75 mm) platinum fiducial. Minimum contrast (551 HU) and reduced artifacts (rSAL=0.65) were observed for the smallest-diameter (0.28 mm) gold fiducial. Carbon produced the least severe artifacts (rSAL = 0.29). The survey indicated that physicians preferred gold fiducials with a 0.35- to 0.43-mm diameter, 5- to 10-mm length, and a coiled or cylindrical shape that balanced contrast and artifacts. We evaluated 11 different fiducials in terms of visibility and artifacts. The results of this study may assist radiation oncologists who seek to maximize contrast, minimize artifacts, and/or balance contrast versus artifacts by fiducial selection.
Pancreas stereotactic body radiotherapy treatment planning requires planners to make sequential, time consuming interactions with the treatment planning system (TPS) to reach the optimal dose distribution. We seek to develop a reinforcement learning
Cone beam CT (CBCT) has been widely used for patient setup in image guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are 1) to commission a GPU-based Monte Carlo (MC) dose calcu
Dose painting of hypoxic tumour sub-volumes using positron-emission tomography (PET) has been shown to improve tumour control in silico in several sites. Pancreatic cancer presents a more stringent challenge, given its proximity to critical organs-at
The purpose of this study is to develop a deep learning based method that can automatically generate segmentations on cone-beam CT (CBCT) for head and neck online adaptive radiation therapy (ART), where expert-drawn contours in planning CT (pCT) can
Cancer is a primary cause of morbidity and mortality worldwide. The radiotherapy plays a more and more important role in cancer treatment. In the radiotherapy, the dose distribution maps in patient need to be calculated and evaluated for the purpose